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Dynamical control for capturing vortices near bluff bodies
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We investigate the vortex dynamics near a translating and rotating circular cylinder in a two-dimensional
uniform viscous flow. In analogy with the point-vortex and Eulerian dynamics, there is an interesting scattering
effect of vortices approaching the cylinder from far upstream. The vortex–boundary-layer interaction plays an
important role in the scattering processes. We implement a modified Ott, Grebogi, and Yorke chaos control
scheme, based on a low-dimensional Hamiltonian model of the flow, to capture and stabilize a concentrated
vortex around the cylinder. This point-vortex-based control model can successfully be applied in a viscous flow
when control is actuated by uniformly rotating the cylinder and actively changing the background flow velocity
far from the body. We demonstrate that such a control mechanism can simultaneously control the vortex
dynamics, and also suppress the vortex shedding. An analysis of the vortex–boundary-layer interaction is
presented to explain the absence of vortex shedding during control simulations.@S1063-651X~98!10508-1#

PACS number~s!: 47.32.Cc, 05.45.1b, 47.52.1j, 83.50.Ws
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I. INTRODUCTION

The interaction of fluid flows and vortical structures wi
embedded bodies is an important research area in fluid
chanics, with widespread applications in hydrodynamics
aerodynamics, and structural engineering problems. In re
years, considerable effort has been made to control such
flows in order to improve the flow characteristics. The po
sible applications include wake stabilization, lift enhanc
ment, drag and noise reduction, and mixing enhancem
and are attracting increasing interest@1–5#.

The complexity of such control problems leads to t
study of reduced low-dimensional flow models, which in c
tain limits capture most of the qualitative features of vorte
body interaction@6–11#. These models provide a framewo
where an active control algorithm can be easily develo
and understood, before it is applied in a realistic fluid syst
@i.e., full Navier-Stokes~NS! equations#. More importantly,
recent advances in control theory of dynamical systems
naturally be applied in these reduced low-dimensional fl
systems. In particular, the method developed by Ott, G
bogi, and Yorke~OGY! @12# has already proven to be su
cessful in several applications, such as controlling a mag
toelastic ribbon @13#, a thermal convection loop@14#,
chemical reactions@15#, solid state devices@16#, and chaotic
lasers@17#.

One of the simplest models for the interaction of a bl
body with concentrated fluid vorticity is that of a sing
Hamiltonian point vortex interacting with a two-dimension
~2D! cylinder. This system has been extensively studied@18#,
and it is known to exhibit several remarkable features incl
ing a chaotic capturing phenomenon. It has been shown

*Also at Department of Physics, University of California, S
Diego, La Jolla, CA 92093-0319.
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viously @8# that by a proper control algorithm such a vorte
can be stably captured near the cylinder. A more interes
result is that the controlled capture can successfully
implemented even for a distribution of vorticity, at corr
sponding parameter regimes@8#. In this work a continuous
vorticity distribution was evolved according to the NS equ
tions, coupled with inviscid ‘‘free-slip’’ boundary condition
on the cylinder surface. This approach, which essenti
simulates an inviscid evolution and avoids some numer
difficulties, was aimed to study the qualitative correspo
dence of Hamiltonian dynamics for continuous fields.

Our aim in this paper is to similarly analyze the dynam
of coherent vortical structures approaching a rotating cy
der in a viscous fluid at Reynolds number around Re51000,
and to develop a possible control mechanism to stably c
ture a vortex around the cylinder. First, we show that ther
an interesting vortex scattering effect, and even a vortex c
turing phenomenon, in the case of a rotating cylinder. Th
phenomena have been previously pointed out in the Ha
tonian vortex dynamics and in the inviscid flow. In the vi
cous case, however, they have a completely different ph
cal origin: the vortex–boundary-layer interaction, whic
plays an important role in the vortex dynamics.

Secondly, we demonstrate that by proper perturbation
the flow it is possible to control a vortex passing by a cyl
der. The basic requirement we impose for such a con
algorithm is that it be implemented only through physica
motivated boundary conditions. This leads essentially to t
mechanisms in the framework of our model system: one
either rotate the cylinder and/or change the uniform ba
ground flow velocity far from the body~i.e., the translational
velocity of the cylinder!. The other parameters of the prob
lem, such as the circulation around the body or the vor
strength, are not experimentally accessible parameters
realistic viscous flow, and thus they cannot be used for c
trol. Other forms of control, such as blowing and suction
the cylinder surface, are not studied in this paper. They
1883 © 1998 The American Physical Society
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1884 PRE 58PÉNTEK, KADTKE, AND PEDRIZZETTI
however, likely candidates for alternative control actuato
as they have been used with success in other flow con
problems@7#. In this paper we use small changes in the u
form background flow velocity far from the body as contr
actuator. We show that these perturbations combined wi
uniform rotation of the cylinder can successfully control t
vortex and simultaneously stabilize the boundary-layer
namics.

In our analysis we first review the Hamiltonian vorte
dynamics, and implement the control algorithm for the poi
vortex system by using perturbations of the background fl
velocity far from the body. In order to clearly understa
what the particular effects of the finite-size vortex patch,
the diffusion of vorticity, and of the vortex–boundary-lay
interaction on the vortex dynamics and control in a visco
flow are, we review in some detail the free-slip vortex d
namics. The free-slip numerical simulations are designe
understand the vortex dynamics and control for a vor
patch in the presence of viscosity but without a bound
layer on the cylinder surface. Next, we analyze the vor
dynamics in a viscous flow around a rotating cylinder, a
show the influence of the boundary layer on the vortex
namics. Finally, these results are used to develop the co
procedure for the vortex dynamics.

This paper is organized as follows. In the next section
vortex dynamics and control problem is formulated f
Hamiltonian point-vortex dynamics. Section III is devoted
the numerical procedure for solving the Navier-Stokes eq
tions for free-slip and no-slip dynamics. In Sec. IV an ana
sis of the free-slip vortex scattering and control is presen
Section V is devoted to the vortex scattering dynamics i
viscous flow. The control algorithm for the viscous case
described in Sec. VI. A detailed analysis of the vort
boundary-layer interaction and the stability of the bound
layer during control is presented in Sec. VII. Section V
contains our concluding remarks.

II. THE HAMILTONIAN MODEL

The Hamiltonian model consists of a circular bounda
centered at the origin of the coordinate system, embedde
a uniform background flow of velocityu0 parallel to thex
axis and pointing in the negativex direction~Fig. 1!. We also
assume a possible varying perturbationdu0 to the uniform
background flow velocity. A point vortex of circulationk is
advected past the cylinder by the background flow, star
upstream of the cylinder. In nondimensional polar coor
nates (r ,u), scaled by the cylinder radiusR0 and the back-
ground flowu0, the Hamiltonian for the vortex dynamics
given by @18#

H52~11«!r S 12
1

r 2D sinu1
s

2
ln~r 221!, ~1!

where the first term is due to the background flow, and
second term to the flow induced by an image vortex. H
s5k/2pR0u0 is the nondimensional vortex strength. Th
parameter«5du0 /u0 represents the rescaled perturbation
the background flow. Note that the possible rotation of
cylinder is not included in Eq.~1!. This could be modeled by
including a uniform circulation around the cylinder. Sinc
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however, in the viscous flow we are interested in simulatio
on time scales much shorter than the typical spin-up time
the fluid around a rotating cylinder, as a first approximati
the effect of the cylinder rotation can be neglected if t
vortex does not come very close to the cylinder surface.

The equations of motion for the vortex dynamics are
the Hamiltonian form:

ṙ 5
1

r

]H

]u
, and u̇52

1

r

]H

]r
. ~2!

Equation~2! corresponds to a one degree of freedom auto
mous Hamiltonian system that is always integrable. W
small, time-dependent perturbations introduced into
background flow, however, Eq.~2! has the same structure a
that of a driven one degree of freedom Hamiltonian syst
that is known to generically exhibit chaos. Thus the vort
approaching the cylinder can be captured and exhibit co
plicated, chaotic motion around the cylinder for afinite time
before it is transported away downstream@18,19#. This be-
havior is a hydrodynamic manifestation of chaotic scatter
@20#, or more generally, of transient chaos@21#.

A detailed analysis of the phase space of the above sys
reveals a simple flow topology@18#. To illustrate our control
strategy, we choose a simple autonomous system with fi
s522.962 96, and«50 that produces a single saddle poi
at (0,23) in Euclidean coordinates@Fig. 3~a!#. The control
technique presented in this paper is independent of the
cific choice of the parameters. The technique relies on th
existence of at least one saddle point which can be foun
any parameter regime. The solid lines in Fig. 3~a! are the
constant energy lines of the Hamiltonian~1!. Since the en-
ergy is conserved during the motion, they also correspon
the vortex trajectories. We emphasize that these lines are
the stream lines of the flow. The stream-line pattern depe
on the actual vortex position, and is changing in time as
vortex is advected past the cylinder.

Our aim here is to capture and stabilize the passing vo
at this fixed point by utilizing the OGY method of chao
control. Briefly, the OGY method stabilizes one of the ma
unstable periodic orbits or fixed points which are inheren
present in the dynamics of the system. For unstable fi

FIG. 1. Schematic diagram of the idealized flow.
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PRE 58 1885DYNAMICAL CONTROL FOR CAPTURING VORTICES . . .
points of hyperbolic character~also called saddle points!
there exists a curve along which the fixed point can be
actly reached, named the stable manifold@12#. The control
consists of small perturbations applied in such a way a
drive the actual trajectory close to the stable manifold of
desired orbit~cf. Fig. 2!. In this way, we take advantage o
the naturally attractive dynamics around the stable mani
to reach the unstable fixed point. Since the stable manifol
typically a set of measure zero, and it cannot be reac
exactly, control is repeated at discrete time stepsDt to apply
corrections. Here we will restrict ourselves to controlling
single fixed point, and not the full transient chaotic dyna
ics. The method is nevertheless the same, and can be dir
applied for the chaotic case as well.

The control procedure described above is capable of c
trolling the vortex dynamics if the vortex initially starts i
the vicinity of the fixed point, where a linear approximatio
of the dynamics is valid@12#. In open flows, however, the
probability that the vortex will pass by a close neighborho
of the fixed point is typically very small. Only a small frac
tion of initial conditions lying around the stable manifo
satisfy this condition. To demonstrate this one could s
with a large number of initial conditions and wait until on
of them falls in the preselected neighborhood of the des
orbit, as transient chaos has been first controlled@22#. Alter-
natively one can implement a targeting algorithm@23# that
drives the vortex to the fixed point, not necessarily w
small perturbations.

Such a targeting algorithm has been proposed in Ref.@8#.
It takes advantage of the robustness of the flow topolog
large perturbations that is observed in our model system,
the saddle-point-like structure is preserved even for la
perturbations. Ifṙ5A(r ,«) represents the dynamical syste
of Eq. ~2!, the dynamics in the vicinity of the fixed point ca
be approximated by the linearized equation

ḋr5Jdr1G«, ~3!

where the actual vortex position relative to the fixed poin
dr , and

FIG. 2. Schematic diagram of the saddle pointO and its stable
and unstable manifolds~solid lines! in the phase space. Under sma
perturbations the fixed point moves alongG to O8. The control
algorithm requires a perturbation that brings the original pointr (t)
close to the stable manifold. The perturbed system is shown
dashed line. Due to the applied control the trajectory approache
stable manifold of the unperturbed system along the dotted line
-
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J5
]A

]r U
dr50,«50

~4!

is the Jacobian matrix evaluated at the saddle point.
vector

G5
]A

]« U
dr50,«50

~5!

gives the effect of small perturbations on the dynamical s
tem. After a short evolution timeDt, the new vortex position
becomes

dr ~ t1Dt !'@11JDt#dr ~ t !1GDt«~ t !. ~6!

To achieve control, the vortex dynamics is perturbed
such a way that the vortex starting upstream of the cylin
is driven along the stable eigendirection in the vicinity of t
fixed point. Let es and eu denote the stable and unstab
eigenvectors of the JacobianJ, respectively. We define the
covariant unstable eigenvectorfu by the relations

fu•eu51 and fu•es50.

The size of the perturbation is evaluated from the condit
that the projection ofdr on the covariant unstable eigenve
tor fu of matrix J should decrease each time control is a
plied @Fig. 1~b!#, i.e.,

fu•dr ~ t1Dt !5~12b!fu•dr ~ t !. ~7!

The parameterb is smaller than one, and is chosen to be
function of the distanceudr u in order to control the magni-
tude of the perturbation during the targeting procedure. T
required perturbations« can then be expressed as a functi
of the positiondr relative to the fixed point in the following
way @8#:

«~ t !52S lu1
b

Dt D fu•dr ~ t !

fu•G
, ~8!

wherelu is the unstable eigenvalue ofJ. In the present pape
an exponential dependenceb5exp(2g udr u) has been used
although the qualitative results are not apparently depen
on the particular functional form.

Figure 3~a! shows the dynamics of a point vortex und
the perturbations~8!. The parametersfu , G, and lu have
been determined analytically from Eqs.~1! and~2!. The time
evolution of perturbations to the uniform background flo
are shown in Fig. 3~b!. One can clearly observe that th
control algorithm drives the vortex along the stable direct
to the saddle point. Except for the initial perturbations duri
the targeting procedure, only extremely small perturbatio
are needed to keep the vortex at the saddle point. In
example shown in Fig. 3~b! the maximum value of the per
turbation is quite large during the targeting procedure («max
'1.6). This is due to the fact that if the dynamics is n
chaotic, it is typically not possible to drive the vortex traje
tory to the stable manifold by small perturbations only. O
can, however, optimize this targeting procedure by prope
choosing theb(udr u) function. Depending on the particula
objective, one can attempt to either minimize the largest p

y
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1886 PRE 58PÉNTEK, KADTKE, AND PEDRIZZETTI
turbations or to achieve a smallest cost solution, e.g.,
minimizing *«(t)dt. Alternatively, in a real fluid system on
can also impose restriction on the maximum allowed ac
eration of the cylinder, i.e., one can limitD«/Dt to reflect
limitations due to the inertia of the cylinder.

During the control part, the size and frequency of t
maximum perturbations@the three spikes in Fig. 3~b!# de-
pend on the precision of measurement ofdr . Higher preci-
sion in dr results in more frequent and smaller magnitu
perturbations. If the absolute precision isz, the maximum
perturbation scales as«max;z(lu11/Dt), and the time in-
terval between spikes asDtspikes;(ln z)/lu .

Our aim in this paper is to analyze the correspond
vortex dynamics and control as above in a viscous flow. D
to the complexity of the problem, we first analyze the vort
dynamics with inviscid free-slip boundary conditions, and
a second step we concentrate on the viscous case. The
section details the numerical procedure for both the free-
and no-slip simulations.

III. NUMERICAL SOLUTION OF
NAVIER-STOKES EQUATIONS

In our numerical analysis we use a pseudospectral ev
tion scheme discussed previously in Ref.@24#. The NS equa-
tion is solved using a vorticity-stream function representat
(v,c) of the flow implemented on a polar grid centered
the body. The scheme uses a finite-difference approxima
in the radial direction and spectral decomposition in the
gular direction. The velocity field in polar coordinates (r,f)
is given by

FIG. 3. ~a! Typical flow topology: vortex flow lines with arrows
indicate direction of the vortex motion. Small circles indicate tim
evolution of a point vortex under the dynamics of the control a
targeting scheme. Initial vortex position is~3.0, 24.0), ands5
22.962 96. The control time interval isDt50.1 and the targeting
parameterg51. ~b! The perturbation to the background flow v
locity during control.
y
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vr5
1

r

]c

]f
and vf52

]c

]r
~9!

for the radial and tangential velocities, respectively. The
equations rendered in dimensionless form are

]v

]t
5

1

rS ]c

]r

]v

]f
2

]c

]f

]v

]r D1
1

Re
¹2v, ~10!

v52¹2c, ~11!

where the Reynolds number Re5u0R0 /n andn is the kine-
matic viscosity.

To ensure high grid density in the physically interesti
region ~close to the body! a radially stretched grid is intro
duced. Such a grid maintains high resolution close to
cylinder yet can still extend to large distances, to simulat
real open flow. In particular, we useh5 ln@(r211a)/a# as
the new radial coordinate witha being a stretching param
eter.

The main component of the flow field is due to the bac
ground flow, and can be derived from the inviscid strea
function:

c0~r,f!52~11«!r S 12
1

r2D sinf. ~12!

To simplify numerical calculations we rewrite the NS equ
tions to evolve only the corrections to this flow. The resu
ing equations are somewhat lengthy and are omitted here
brevity. They are, however, identical to those in Ref.@24#
and the reader is referred there. The time evolution is co
puted using a third-order Runge-Kutta scheme with fix
step size@24#.

On the outer boundary of the computational domain
boundary conditions are set to match the inviscid solution
from the body, i.e.,

c~rmax,f!5c0~rmax,f!. ~13!

Details of how these boundary conditions are numerica
implemented can also be found in Ref.@24#.

A. Details of the free-slip simulation

The physical boundary conditions on the cylinder surfa
are, in the free-slip case,

]c

]f U
r51

50. ~14!

Numerically this is implemented asc(r51,f)50. Addi-
tionally, as suggested in Ref.@25#, the numerical boundary
condition ]v/]r50 is imposed on the cylinder boundar
which correctly reproduces an inviscid dynamics.

As the initial vorticity field for the control simulations, we
used a localized Gaussian distribution of vortici
;exp@(r2r0)2/2d2#centered on a pointr0 far from the cyl-
inder, of typical transversal sized. The initial position of the
Gaussian vortex was in the vicinity of the stable manifold
the fixed point of the background point-vortex model,
avoid artificially large initial perturbation during the targe

d
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PRE 58 1887DYNAMICAL CONTROL FOR CAPTURING VORTICES . . .
ing procedure. The extensiond of the distribution ranges
from 0.2 to 0.6, so the size of the vortex is comparable w
that of the cylinder.

The positionr0(t) of this extended vortex, required fo
the input to the control algorithm, is computed as the cen
of vorticity in a domainD(t) around the vortex:

r0~ t1DT!5

*D~ t !
r 8v~r 8!u„2v~r 8!…d2r 8

*D~ t !
v~r 8!u„2v~r 8!…d2r 8

, ~15!

whereDT is the time step for numerical integration andD(t)
is a disk of radius 2d centered on the vortex position at tim
t, i.e., r0(t). The functionu(v)51 for v.0 andu(v)50
for v,0, is used to weight the positive vorticity only, avoid
ing confusion with the opposite-signed shed vorticity~which
appears only in the no-slip simulations!. In a realistic con-
troller such an input should come from instantaneous ph
cal measurements, such as multiple pressure observa
and/or velocity monitoring. It has been shown previou
that the vortex dynamics can be entirely reformulated in
pressure-measurement space, by recording two or three
pressures on the cylinder surface@26#. Then a control algo-
rithm analogous to the one described here can be applie
the pressure space without relying on actual vortex posi
@27#.

B. Details of the no-slip simulation

The physical boundary conditions on the cylinder surfa
are typical no-slip conditions, i.e.,

]c

]fU
r51

50 and
]c

]rU
r51

5V, ~16!

whereV is the angular velocity of the cylinder, measured
the counterclockwise direction. These boundary conditi
can be used to specify the stream function and the vorticit
the boundary. As numerical boundary condition for t
stream function,c50 is used. The value of the wall vorticit
is obtained by inserting conditions~16! in Eq. ~11!, specified
at the wall and using a standard second-order estimate@25#.

To ensure physically self-consistent initial conditions f
the vortex dynamics, and to avoid the transient effects
wake generation during the control process, we first comp
the solution for a fully developed wake with no controlle
vortex present. To break the initial symmetry of the wa
~which is unavoidable for symmetric initial conditions! the
cylinder was impulsively rotated back and forth during t
first few time units and stopped afterwards. The relaxat
toward a periodic solution is checked by monitoring the e
lution of forces on the cylinder@cf. Fig. 15~a!#.

After this, a Gaussian distribution of vorticity is superim
posed on the vortex street solution centered at a pointr0 far
upstream of the cylinder. In the numerical scheme this c
responds to a vortex that suddenly enters the finite comp
tional domain. In response to this event the total circulat
contained in the domain grows by a quantity equal to
vortex circulation.

This fact cannot be accounted for by the boundary con
tion ~13! which imposes the irrotational field, with zero ci
h
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culation, on the outer edge of the domain. The artificial co
straint of condition~13! would require creation of additiona
circulation. The only mechanism by which additional circ
lation can be created is by vortex shedding from the cylin
surface. Thus the placement of the vortex in the compu
tional domain would result in an impulsive vorticity gener
tion and consequent impulsive shedding even if the vorte
placed far from the cylinder. To maintain the circulation ba
ance, condition~13! should be replaced by a condition whe
the actual value of circulation around the domain is impos
explicitly. Instead, for numerical convenience, this is do
by introducing a second vortex of equal strength and op
site sign far downstream which maintains the vorticity b
ance in the computational domain. This additional vort
does not influence directly the vortex dynamics~it is far from
the upstream vortex!, but successfully balances the circul
tion in the computational domain. The position of the vort
placed upstream is monitored in analogy with the free-s
case using Eq.~15!.

The drag and lift coefficientsCD andCL are computed as
@28#

CD5E
0

2p

df~2 p̃ cosf2s̃rfsinf!,

~17!

CL5E
0

2p

df~2 p̃ sinf1s̃rfcosf!,

where the first and second terms describe the contribution
the pressure and shear stress forces, respectively. The di
sionless quantitiesp̃ and s̃rf are defined as

p̃5
p

r̃u0
2R0

5
1

ReE0

f

dw
]v

]r
~r51,w! ~18!

and

s̃rf5
s rf

r̃u0
2R0

5
R0

Re
@v~r51,f!1V#. ~19!

Here r̃ is the density of the fluid.
To test the numerical procedure, several runs were car

out for different values ofV at Re5500 with no controlled
vortex present. The time evolution of the drag and lift co
ficients was monitored. We have found good agreement@27#
with the coefficients measured by Chewet al. using a hybrid
vortex scheme@28#.

IV. FREE-SLIP DYNAMICS AND CONTROL

Before applying the control scheme in a NS flow, we ha
to determine whether the basic features of the point-vor
flow topology are still preserved in the NS flow. Such
analysis has been presented previously for the free-slip
@19#. Here, we briefly reexamine some of the important
sults with a control implemented by changing the unifo
background flow velocity at infinity.

Previous results on vortex scattering around a cylin
using free-slip dynamics have shown a strong corresp
dence to the Hamiltonian vortex dynamics@19# if the vortex
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1888 PRE 58PÉNTEK, KADTKE, AND PEDRIZZETTI
patch size is small (d,0.5). It has been shown analytical
in Ref. @19# that the correction to the Hamiltonian dynamic
equations is of orderh0

2, whereh0 is a small parameter char
acterizing possible internal degrees of freedom of the vo
~e.g., ellipticity!. This can also be observed in Fig. 4 whe
the time evolution of the vorticity is shown for an initia
patch size ofd50.25. The Reynolds number is Re51000.
The vortex maintains coherence as it is advected past
cylinder and the center of vorticity closely follows th
Hamiltonian trajectory. If the vortex is extended (d.0.5) the
interaction is significantly more complex. This can be o
served in Fig. 5, where the vortex dynamics in the case of
free-slip boundary conditions is plotted for a typical initi
condition for a large vortex patch of sized50.6. During the
vortex-cylinder interaction process the initially strongly c
herent vortex is stretched, and some low-vorticity filame
detach from the vortex and remain around the cylinder e
after the core of the vortex leaves the domain shown in F
5. In this case only the core of the vortex patch of sized
50.6 maintains coherence and follows roughly the Ham
tonian trajectory@cf. Fig. 6~a!#.

Thus we expect that for spatially coherent vortices m
of the features of the point-vortex control can be read
implemented for NS free-slip dynamics. The only importa
inviscid process that cannot be modeled with a simple po
vortex description is the vortex breakdown, when stro
shearing fluid motion breaks away a large extended vor
or some strongly stretched vortex filaments. As we will s
below @cf. Fig. 6~d!#, however, there are no regions of stro
shear in the vicinity of the target saddle point, and the
effects do not play an important role during control on tim
scales shorter than the viscous time.

To achieve control, external perturbations are introdu

FIG. 4. Time evolution of a small vortex of sized50.25, with
free-slip dynamics. The vorticity field is shown at time intervals
2. Constant vorticity lines are shown in increments ofvmax/10. The
initial vortex position is~3.0,24.0),s522.962 96, and Re51000.
One grid cell corresponds to a unit square.
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to the background flow velocity at infinity in the same spir
as for the point-vortex case. The position of the vortex r
quired to evaluate the perturbation is obtained as the ce
of vorticity of the controlled vortex~15!. Thus the action of
the controller is determined solely as though a point vortex
present at the center of vorticity of the extended vortex.

To test the validity of the control scheme in the free-sl
framework, we place a blob of vorticity with initial condition
(x0 ,y0)5(3,24) andd50.6 for Re51000. A grid of 128
3128 is used with stretching parametera50.2, domain size
rmax5100, and the time step for numerical integration
0.01. We first evolve the vorticity profile without the contro
scheme, as shown in Fig. 6~a!. One can observe that the cor
of the blob advects past the cylinder essentially following t
Hamiltonian flow lines in spite of the significant shape di
tortion and detachment of the low-level vorticity. Then w
repeat the same numerical experiment, now with the cont
ler turned on@Fig. 6~b!#. The vortex slowly approaches th
Hamiltonian fixed point and remains there for at least
characteristic flow times. In spite of the fact that the co
trolled vortex has a slightly distorted shape, the algorith
results in the stabilization of the vortex very close to th
fixed point. Figure 6~c! displays the applied perturbation to
the uniform background flow as a function of time. After th
short targeting period, the required perturbation is sma
about 5% of the background flow velocity. With a perfe
model of the flow the perturbations would go to zero in th
long time limit. The discrepancy is due to the fact that th
shape distortions are not included in the point-vortex mod
on which the control algorithm is based. Note that while
elliptic vortex like the one in the final stages of control
expected to rotate, this one does not have a rotational m
tion. The absence of rotation can be explained from the

FIG. 5. Time evolution of a large, extended vortex of sized
50.6, with free-slip dynamics. The vorticity field is shown at tim
intervals of 2. Constant vorticity lines are shown in increments
vmax/10. The initial vortex position is~3.0, 24.0), s522.962 96,
and Re51000.
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PRE 58 1889DYNAMICAL CONTROL FOR CAPTURING VORTICES . . .
pology of the stream lines@Fig. 6~d!#, which is essentially
similar to the stream-line pattern for a vortex pair@29#. The
vortex takes on the shape of the stable stream-line patte
Figure 6~d! also shows that there is no shearing motio
around the controlled vortex and thus the only mechanism
which vorticity can be lost is by diffusion beyond the circu
lar stream-line pattern. On the time scales of our simulatio
this is minimal and thus there is no significant loss of vo
ticity during control. This numerical experiment demon
strates that the topology of the underlying Hamiltonian dy
namics is still exhibited in the free-slip case. The vorte
itself remains stable under the applied perturbations in sp
of the shape distortion and diffusion of the original Gaussia
vorticity profile.

For the free-slip control the capture time is determined b
the viscosity. On viscous time scales the concentrated vor
patch diffuses away and eventually will be broken away b
shearing fluid motion. Since this time scale is on the order
1000 time units we have never been able to reach this sta
in our numerical simulations.

V. VORTEX SCATTERING IN A VISCOUS FLOW

We now examine the vortex scattering in the case of n
slip boundary conditions on the cylinder surface, when th
cylinder is rotating counterclockwise with uniform angula
velocity V. This rotation is characterized by the dimension

FIG. 6. ~a! Evolution of vortex core for the dynamics of an
uncontrolled vorticity distribution with free-slip dynamics shown in
detail in Fig. 5. The corresponding point-vortex trajectories a
shown by thin dashed line.~b! shows the controlled dynamics. The
vortex is stably captured at the unstable fixed point of the Ham
tonian flow situated at (0,23.0) in Euclidean coordinates. As initial
conditions,~3.0, 24.0), s522.962 96, and sized50.6 have been
used. One contour level corresponding tovmax/2 is plotted every
unit of time. Thick dashed lines correspond to additional vorticit
contours of 0.3 and 0.1 ofvmax at t530. The figure clearly indi-
cates that the control scheme is stable even for a large vortic
distribution, and a close correspondence with the underlying Ham
tonian system.~c! Time evolution of the control parameter: the
perturbation to the background flow velocity.~d! Stream lines of the
flow in the controlled case att530.
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less parametera5VR0 /u0, i.e., the ratio of the velocity of
the cylinder surface to that of the background flow at infini
The vortex shedding, drag, and lift coefficients have be
extensively analyzed fora values ranging from 0 to 6@28#.
In this section we focus our attention on the dynamics of
external vortex that approaches the cylinder from upstre
interacts with it, and then is advected downstream. Suc
vortex could originate from vortices shed by other bod
placed far upstream. This vortex dynamics can be regar
as a kind of scattering process, with a very simple dynam
~uniform advection! far from the cylinder, and a highly non
trivial interaction close to the cylinder. With the initial vor
tex coordinatex0 fixed, y0 can be regarded as an impa
parameter that characterizes the scattering process.

There is an additional parameter in the problem, the ph
of the beginning of the simulation relative to the period
vortex shedding. Since the vortex approaching the cylin
strongly disturbs the vortex shedding, we have found that
phase is not an important parameter in the simulation.

Figure 7 displays vortex trajectories with different impa
parameters ata50 ~no rotation!. For comparison Fig. 3~a!
displays the vortex dynamics for the Hamiltonian syste
The basic difference comes from the vortex–boundary-la
interaction. Figure 8 shows the time evolution of the vort
ity field for the trajectory marked in Fig. 7. As the vorte
approaches the cylinder on a trajectory similar to the Ham
tonian dynamics, at a critical distance from the cylinder s
face a secondary vortex of opposite sign is induced in
boundary layer, which pairs with it and is advected aw
Since the strength of the two vortices is not the same, t
travel on curved trajectories. The vortex trajectories can ty
cally intersect themselves or other trajectories, since the
locity field depends not only on the actual vortex position b
rather on the entire trajectory, i.e., the whole history of t

e

l-

ty
il-

FIG. 7. Vortex scattering with no-slip boundary conditions
Re51000. The trajectory of the center of vorticity for vortex sca
tering with different impact parameters is shown fora50. As ini-
tial vortex coordinatex055, 26<y0<0 has been used. For com
parison solid lines in Fig. 3~a! display the vortex trajectories fo
Hamiltonian dynamics.
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FIG. 8. ~Color! Time evolution of the vorticity field for the trajectory marked in Fig. 7. The vorticity contours are shown in green
blue for positive and negative vorticity, respectively. The vorticity increment between consecutive level lines is 5, starting with 2
22.5 for green and blue lines, respectively. The cylinder is shown in red. The time between consecutive instants of vorticity field
2563200 grid has been used in angular and radial direction, respectively, with a step size for integration of 0.001. The stretching p
was a50.2 and the radius of the computational domainrmax5100. The size of the initial Gaussian profile wasd50.25 and the vortex
strengths522.962 96. One grid cell corresponds to a unit square.
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time evolution. Interestingly, Fig. 7 suggests that there is
envelope of these trajectories that defines a region around
cylinder that is not accessible for vortices coming from o
side.

Next, we focus on the case of a rotating cylinder.
understand the scattering process in the presence of a r
ing cylinder, we recall that the spin up of the surroundi
fluid at radiusr from the origin takes place on a time scale
order Re(r21)2. Thus the typical time scale can be assum
to be of order of Re. This is much larger than the time
vortex spends around the cylinder before it is transpor
away by the background flow. Therefore, on relatively sh
n
the
-

tat-

d
a
d
t

time scales, and for distances not too close to the cylin
surface, the vortex dynamics is not directly affected by
cylinder rotation. The rotation does, however, influence
vortex dynamics through its effect on the stability of th
boundary layer. We note here that the cylinder starts to ro
impulsively at timet50, when the vortex is placed upstrea
of the flow at coordinates (x0 ,y0). Apart from numerical
convenience, this seemingly arbitrary relation between
start of the spin and the position of the vortex will be r
garded as part of the control action~see next section!. The
details of the actual vortex dynamics may subtly depend
this choice, but we observe no qualitative differences as l
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asur0u!Re ~herer0 denotes the initial vortex position! @27#.
Figure 9 shows the vortex scattering for different impa

parameters for a rotating cylinder ata54. One can observe
that the vortex can now come significantly closer to the c
inder surface. The trajectory marked with an arrow indica
the existence of a saddle-point-like structure below the c
inder at some instant of time. The time evolution of the v
ticity field corresponding to this trajectory is shown in Fi
10. The boundary layer is stable when the vortex is relativ
far from the cylinder surface, but a large positive-signed v
tex is shed as the scattered vortex comes close to the cyli
surface.

Figure 11 displays the vortex scattering ata510. Here
the overall flow structure has some similarities to the Ham
tonian case, as vortex trajectories typically penetrate
wake of the cylinder. There is a limiting curve for incomin
vortex trajectories similar to the separatrix in the Ham
tonian case, that divides trajectories passing below and ab
the cylinder. One of the significant differences is that seve
initial conditions lead to a finite-time vortex capture. Th
time evolution of the vorticity field for one of these captur
trajectories is shown in Fig. 12. In the point-vortex dyna
ics, such finite-time vortex capture has been observed fo
oscillating cylinder only. In the Hamiltonian dynamics th
origin of such capture is the explicit time dependence of
equations of motion~2! that leads to the formation of a cha
otic saddle in the vicinity of the cylinder@20,30,31#. In the
case of a viscous flow there is an implicit time dependenc
the dynamics due to the vortex–boundary-layer interact
Moreover, since the captured vortex comes close to the
inder surface, it is affected by the fluid that is spinning up
the vicinity of the rotating cylinder surface. This also co
tributes to the fast rotation of the vortex around the bo
Note that there is no significant vortex shedding during s
a capture process.

In this section we analyzed the vortex scattering on
rotating and translating cylinder in a viscous flow. While t
dynamics far from the body is described qualitatively by t

FIG. 9. Vortex scattering with no-slip boundary conditions. T
trajectory of vortices with different impact parameters is shown
a54.
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Eulerian dynamics, the interaction with the boundary layer
the vortex comes close to the cylinder induces some n
interesting effects, i.e., the presence of a region not ac
sible for vortices approaching from upstream, and also a v
tex capturing effect@27#. We plan to present a detailed anal
sis of this scattering process in future.

VI. VORTEX CONTROL IN THE VISCOUS CASE

The numerical experiments in the preceding section s
gest that the boundary-layer dynamics depends strongly
the rotation parameter. The larger thea, the longer is the
typical time scale on which a large secondary vortex form
At large a values the boundary-layer dynamics does n
couple with the vortex dynamics. Even ata54, there is no
secondary vortex shed as long as the vortex approaching
cylinder is about one cylinder radius away from the cylind
surface. On the other hand, on time scales much smaller
Re, the velocity field at the target fixed point is not affect
by the cylinder rotation, and thus our Hamiltonian model~1!
is expected to be valid in the vicinity of the fixed poin
These arguments have resulted in the following formulat
of the control algorithm: let the cylinder be rotating at co
stanta throughout the control procedure in order to preve
secondary shedding of strong opposite-signed vorticity.
multaneously, the perturbation to the uniform backgrou
flow velocity at infinity du0 is changed as a control param
eter. The required perturbation is evaluated based on the
tual vortex position, assuming the ideal Hamiltonian flo
approximation, Eqs.~1!, ~2!, and ~8!. Such a numerical ex-
periment is presented in Fig. 13. The corresponding con
perturbation in the background flow velocity field is show
in Fig. 14.

In Fig. 13, as control is applied the vortex approaches
target saddle point~marked by a cross! along the stable
eigendirection. Due to the constant rotation of the cylind
~a54!, the vortex shedding gradually diminishes and fina
disappears aroundt512 @plate~g!#. The vortex settles down
on the fixed point and remains stable throughout the sim
tion. Correspondingly, the magnitude of the perturbat
slowly decreases, but asymptotically does not reach the
value. This effect is due to the simple form of the contr
model of the flow, which does not take into account t
additional vorticity in the boundary layer, and to the sm
but non-negligible effect of the cylinder rotation on the v
locity field at the target point. These additional effects lead
a renormalized unperturbed background flow velocity tha
slightly smaller than 1, as also suggested by the small ne
tive asymptotic value of the perturbation of20.3. In fact by
estimating the position of the fixed point and the eigenval
and eigenvectors from the Navier-Stokes scattering sim
tions, rather than from the Hamiltonian model, one can f
ther reduce the magnitude of the perturbations. Such a si
lation is presented in Ref.@27#, where the control parameter
are extracted from the marked trajectory of Fig. 9. The
quired perturbations for control are decreased by an a
tional 50%@27#.

During the control procedure the overall controlled vo
ticity is conserved. The vorticity in a large domain arou
the controlled vortex changes less than 1% during the con

r
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FIG. 10. ~Color! Time evolution of the vorticity field witha54 for the trajectory marked by arrow in Fig. 9. The parameters of
numerical solution are the same as those used in Fig. 8.
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simulation. The original compact Gaussian vorticity profi
however, diffuses away considerably as shown by the ev
tion of the vorticity contour lines in Fig. 13.

The time evolution of the drag and lift coefficients is al
monitored throughout the numerical experiment. Figure
displays these coefficients for various values ofa for both
the controlled and the uncontrolled state. As a reference,
time evolution witha50 and no controlled vortex present
also shown@Fig. 15~a!#. These are essentially the drag a
lift coefficients for a cylinder uniformly translating in a vis
cous flow. The periodic oscillations are due to the perio
vortex shedding. When the cylinder is rotating counterclo
wise with a54 a Magnus effect is observed and the l
coefficient is significantly increased@cf. Fig. 15~b!#. Note,
however, that the lift cannot be increased without bound
,
u-

5

he

c
-

y

increasing a. Figure 15~c! shows practically the sam
asymptotic value for the lift coefficient ata510 as for the
one ata54. Also, the ratio of the lift to drag coefficient i
actually decreasing froma54 to a510 in accordance with
previous observations by Chewet al. @28#.

Figure 15~d! shows the time evolution of the lift and dra
coefficients during the control procedure. There are two
teresting observations. First, the mean lift coefficient is
negative sign, e.g., the net lift force is toward the captu
vortex. If the captured vortex would be of positive sign, t
target fixed point would lie symmetrically just above th
cylinder and correspondingly, the lift would be toward th
vortex and of positive sign. This is similar to the case o
captured vortex over an airfoil, that is known to significan
increase the lift. Secondly, the drag coefficient is posit
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and small, which means the body translates practically d
free and it is even subject to a small thrust. We note that
actual asymptotic value of the lift coefficient in the co
trolled case is smaller than the one created by a simple M
nus effect at corresponding angular velocities@cf. Figs. 15~b!
and 15~d!#. The ratio of the lift to drag coefficient is, how
ever, significantly higher. We note that the controlled vorte
cylinder system shown in Figs. 13~k!–13~p! has a very simi-
lar stream function pattern to that of a translating dipole w
the controlled vortex being one of the vortices and the c
inder playing the role of the opposite-signed vortex. T
forces we obtained in the NS simulations are consistent w
such a picture.

Figure 15~e! displays the drag and lift coefficient for
controlled vortex when the cylinder is rotating at consta
a510. This shows that the forces do not reach a station
value, but are oscillating periodically around the value m
sured in Fig. 15~c! for a54. This is due to the fact that th
vortex shedding does not disappear completely, as in Fig
and there is a small shedding of low-level vorticity that lea
to the oscillations in the lift and drag coefficients.

The rotation of the cylinder is essential for the success
the control. If the cylinder is not rotating, the vortex can
stabilized for extremely short times only. Soon after the v
tex reaches the target saddle point, an opposite-signed vo
is shed from the boundary layer, pairs with the control
vortex, and subsequently the control fails.

The typical capture time for the no-slip simulations
about 50 time units. On this time scale the boundary la
thickens gradually and eventually a vortex is shed. At t
point the control is lost since the shed vortex usually pa
with the controlled vortex and the vortex pair formed cann
be stabilized any longer.

VII. THE VISCOUS RESPONSE OF
THE BOUNDARY LAYER

Our goal in this section is to show that there is a stea
solution for the boundary-layer equations in the presenc

FIG. 11. Vortex scattering with no-slip boundary condition
The trajectory of vortices with different impact parameters is sho
for a510.
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an external vortex, as suggested by the viscous simulat
in the preceding section. Previous results on the vorte
boundary-layer interaction show that there are two ba
types of response of the boundary layer when a vortex pa
close to a wall@32#. In the first case, when the vortex spe
is relatively low, there is no steady viscous solution. Seco
ary vortical structures develop on the wall, leading to
eruption of the boundary layer@33,34#. In the second case
when the vortex moves fast relative to the wall, there is
stable solution, although the boundary layer ‘‘thicken
gradually@35,36#. Here we show that the long-term stabilit
of the boundary layer observed in the experiments in Sec
is due to an effect more subtle than the one leading to
typical stable behavior mentioned above.

When analyzing the viscous response of the bound
layer we assume that the control is active, as shown in F
13~k!–13~p!. Therefore the vortex remains stationary, a
the cylinder is rotating with a constant angular velocity. F
the boundary-layer dynamics, this means that the bound
conditions can be considered as time independent for s
plicity.

Let us first introduce the following notations for the v
locity components:

w5v r , u5vf ~20!

for the radial and angular components, respectively, and
fine the new boundary-layer scaled radial variables

ỹ5~r21!Re1/2, w̃5wRe1/2. ~21!

The Prandtl equations, governing the evolution of the u
separated boundary layer, result as

]u

]t
1w̃

]u

] ỹ
1u

]u

]f
52

]p`

]f
1

]2u

] ỹ2
, ~22!

]w̃

] ỹ
1

]u

]f
50. ~23!

Herep` denotes the pressure outside of the boundary la
due to the inviscid solution at the cylinder boundary in t
presence of the background flow and the vortex. The B
noulli equation implies, for a pressurep` at the outer edge o
the boundary layer,

dp`52u`du` . ~24!

Therefore Eq.~22! expressed in terms of the inviscid velo
ity u` on the cylinder surface can be written

]u

]t
1w̃

]u

] ỹ
1u

]u

]f
5u`

]u`

]f
1

]2u

] ỹ2
. ~25!

The boundary conditions are

u5a, w̃50 at ỹ50 ~26!

and

u~ ỹ,f,t !→u`~f!, as ỹ→`. ~27!

n
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FIG. 12. ~Color! Time evolution of the vorticity field fora510 in the case of the trajectory marked by arrow in Fig. 11. The parame
of the numerical solution are the same as those used in Fig. 8.
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To increase precision in the physically interesting reg
near the cylinder wall, we introduce the radially stretch
coordinateh5 ln@(ỹ1b)/b#, with b being a stretching param
eter. Then the governing equations~25! and~23! in the new
coordinates become

]u

]t
1

w̃

beh

]u

]h
1u

]u

]f
5u`

]u`

]f
1

1

~beh!2F ]2u

]h2
2

]u

]hG ,

~28!

1

beh

]w̃

]h
1

]u

]f
50. ~29!
n
d

We solve these equations numerically with a stand
finite-difference method. The only input necessary for t
problem isa andu`(f). The angular velocity of the cylin-
der a is constant, whileu`(f) depends implicitly on the
vortex position and background flow. Figure 16~a! shows the
typical inviscid velocity profile when the vortex is on th
target fixed point and the cylinder is not rotating, i.e.,a50.
This profile has been obtained as a solution for the invis
problem with the controlled vortex placed on the target fix
point, and a second opposite-signed vortex placed far do
stream, to maintain vorticity balance, as explained befo
This profile shows the existence of four stagnation poin
One can observe that there is one region with strong adv
pressure gradient~around 1.6&f/p&1.7) where the second
ary vortex is expected to develop@37#.
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FIG. 13. ~Color! Time evolution of the vorticity field in the case of the controlled vortex dynamics witha54. The overall controlled
vorticity does not change significantly during the control procedure. The decrease of the number of level lines is due to the fact that
compact Gaussian profile diffuses away, i.e.,d increases gradually.
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The numerical calculations are performed on a grid
364 in radial and angular direction, respectively. The ou
boundary is set at a large but finite valuehmax54.0 with the
stretching parameterb50.5. The convergence is checked
repeating the simulation on a larger grid 723128. No sig-
nificant differences have been observed.

Figure 16~b! shows the solution to Eqs.~23! and ~24! at
time t50.48. As an initial condition for the velocity field, w
assume that the inviscid solution is valid throughout
boundary. One can observe the newly developed backci
lating structure which later leads to an eruption of the bou
ary layer as seen in Fig. 8~c!. Note that the ‘‘spiky’’ appear-
ance of Fig. 16~b! is due to the presence of the stagnati
points on the cylinder surface, and the position of flows p
6
r

e
u-
-

r-

pendicular to the surface correspond approximately to th
stagnation points.

Figure 16~c! shows the result of the simulation att52.0
for a rotating cylinder, at the typical value used during t
control processa54.0. One can observe the complete a
sence of the secondary vortical structures, in contrast to
case when the cylinder is not rotating. To understand
remarkable stability of the boundary layer@38#, let us trans-
form our problem to a frame comoving with the rotatin
boundary. The inviscid velocity and pressure profile se
from this frame will be similar to the one in Fig. 16~a!, with
one difference: in this comoving frame the vortex and t
background flow is rotating around the cylinder. This mea
that the velocity and pressure profile is changing in tim
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periodically. The region with positive streamwise press
gradient from Fig. 16~a! will have a negative pressure grad
ent just after a period approximatelyt0;p/2a. If the cylin-
der is rotating fast enough, the outer edge of the bound

FIG. 14. Time evolution of the control parameter« during the
control procedure shown in Fig. 13.

FIG. 15. Time evolution of drag~bold line! and lift ~thin line!
coefficients for~a! a50, ~b! a54, and~c! a510 when no con-
trolled vortex is present.~d! and ~e! show the drag and lift coeffi-
cients during control fora54 anda510, respectively. Note, tha
the sign of the coefficients corresponds to the choice of the coo
nate system in Fig. 1, i.e., positive drag or lift coefficient cor
sponds to a force pointing in the positivex or y direction, respec-
tively.
e

ry

layer experiences an average pressure, without strong g
ents. The actual criteria for stability could be formulated
the following way: the typical time scale associated with t
generation of the vortical structures in the casea50, that is
on the order oftv;0.5, should be larger thant0. In terms of
the cylinder rotation, this means that the angular velocitya
should be larger than 1.6. In the limit of largea, the inviscid
velocity at the wall seen in the comoving frameu8̀ (f,t) can
be replaced by its time averaged value^u8̀ (f,t)& t , that in
the first approximation is constant and no longer depends
f. In this way, the flow is similar to one occurring betwee
two concentric cylinders, when the inner cylinder is at re
while the outer one is rotating with a relatively low, consta
angular velocity.

VIII. CONCLUSIONS

In this paper we studied the interaction of a large coher
vortex with a translating and rotating cylinder. We show
that in a viscous flow, there is an interesting and highly no
trivial scattering effect of advecting vortical structure
Moreover, in the case of a rotating cylinder, these vortic
can be captured for long periods. Based on the observat
of vortex scattering in viscous flows on the one hand, an
control scheme previously implemented in inviscid flows
the other, we developed a simple control algorithm to sta
lize an external vortex near a moving cylinder in a visco
flow.

As a main result, we demonstrated that control of t
vortex dynamics based on a low-dimensional reduced
namical model, previously reported in Hamiltonian and N
‘‘free-slip’’ simulations, can be achieved in a viscous flui
While previous studies used the circulation around the c
inder as a control parameter, here we introduced a more
alistic perturbation: small changes in the uniform bac
ground flow velocity at infinity, combined with a uniform

i-
-

FIG. 16. ~a! Inviscid velocity~solid! and pressure~dashed! pro-
file on the cylinder surface for«50, with vortex centered on the
target fixed point. The pressure is plotted in units ofru0

2/2, andp0

is the pressure at infinity. These profiles have been obtained a
solution to the ‘‘free-slip’’ dynamics with a vortex of sized
50.25 placed on the fixed point. Stream lines of the boundary-la
solution in the laboratory frame:~b! for a50 at t50.48; and~c! for
a54.0 att52.0.



n
th
be
te
m
a-
n

id

e
he
s
tu
a
er
n
b
th
th

ed
an
t-
ue
um

he
en
r
d

nt
e
b
a
om
d
ug
d
o
ed

o
th
is
o
a
a

an

lar,
ex

m-
dge
e
not
ints
an

he
is
is-

hed
h

oil
rtex
es

,
to

the

in-
od-
t be
er

ntial
ta-

be
act
to
er.

uid

T.
s-
for
ch
ian
os.
un-
to

he
-

PRE 58 1897DYNAMICAL CONTROL FOR CAPTURING VORTICES . . .
rotation of the cylinder. The perturbation in the backgrou
flow velocity corresponds to the change of the velocity of
cylinder translating in a uniform fluid at rest, and can
implemented even in an experiment. The model sys
shown in this paper is a remarkable example of how so
complex fluid flows described by partial differential equ
tions, which are inherently infinite dimensional, can be co
trolled using a simple low-dimensional model of the flu
flow.

The success of the control is due to the disappearanc
the vortex shedding which results from the stability of t
boundary layer. We studied this boundary-layer dynamic
detail, and showed numerically that under the applied per
bations the boundary layer is stable, and thus no signific
vortex shedding is expected during control. We note h
that the same reasoning which leads to stability of the bou
ary layer in the presence of the controlled vortex can
carried out without the presence of an external vortex, in
case of a rotating and translating cylinder. This suggests
the vortex shedding should disappear ata above some criti-
cal valueac . In fact such disappearance of the vortex sh
ding has been pointed out in experiments by Jaminet
Van Atta @39# at low Reynolds number flows around a rota
ing cylinder. Their observation shows that the critical val
of the rotation parameter increases with the Reynolds n
ber but has a plateau ofac52 starting at Re'80, above
which the critical rotation velocity no longer depends on t
Reynolds number. This result is in qualitative agreem
with our explanation, since the boundary-layer argument p
sented in this section is essentially Reynolds number in
pendent.

In all the successful chaos control experiments prese
thus far @13–17#, control has been performed without th
explicit knowledge of the dynamical equations. The unsta
periodic orbits, and their eigenvalues and eigenvectors h
been obtained by reconstructing the dynamics directly fr
time series. In simple open systems like the one studie
this paper, a few scattering trajectories can furnish eno
information to reconstruct the dynamics around the sad
point. For example, the marked trajectory in Fig. 9 incorp
rates all this information with sufficient precision to be us
in the control dynamics.

In the present study we restricted our investigation to tw
dimensional flows. An interesting question is whether
dynamics of a vortex filament in a three-dimensional flow
stable or not under the control perturbations we apply,
whether instabilities will bend and fold the vortex into
complicated structure. Clearly, more study is needed to
swer this question.

Another interesting problem is whether the flow field c
,
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be controlled for more generally shaped bodies. In particu
the flow over low-speed airfoils with an attached free vort
has attracted recent interest@40–42#. These works have
mainly focused on the stability analysis of the vortex dyna
ics. Others have studied this problem using a leading-e
flap @43–45# or blowing and suction on the airfoil surfac
@46# for flow modifications. These attempts, however, are
active control schemes. It is known that unstable fixed po
of the vortex dynamics can be found in the Hamiltoni
model of a vortex over a Joukowski airfoil@47#. While con-
trol of vortex dynamics in such states is possible in t
Hamiltonian model system, direct numerical simulation
needed to study the corresponding control problem in v
cous flows. In some applications, a vortex stably attac
over an airfoil is of primary interest since relatively hig
levels of lift can be achieved@48#. In other applications,
however, the formation and trapping of vortices over airf
surfaces is not desired, since the detachment of the vo
from the airfoil leads to a sudden decrease of lift, sometim
known as the ‘‘dynamic stall effect’’@32#. In these cases
active control methods could play another role, namely,
prevent metastable capture by driving the vortex toward
unstable direction instead of the stable one.

We must emphasize that, while most point-vortex and
viscid results can be readily extended to more complex b
ies using conformal mappings, the viscous results canno
immediately generalized. The stability of the boundary lay
~which is the key to our successful control method! depends
strongly on the particular geometry considered. The esse
observation is that if a proper mechanism is found that s
bilizes the boundary layer~suppresses the vortex shedding!,
the control of the vortex dynamics in a viscous flow can
successful. At present, there is no reliable way to extr
information from the boundary layer which could be used
design a simple controller that stabilizes the boundary lay
This problem remains a continuous challenge for the fl
dynamics and aerodynamics community.
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