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Dynamical control for capturing vortices near bluff bodies
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We investigate the vortex dynamics near a translating and rotating circular cylinder in a two-dimensional
uniform viscous flow. In analogy with the point-vortex and Eulerian dynamics, there is an interesting scattering
effect of vortices approaching the cylinder from far upstream. The vortex—boundary-layer interaction plays an
important role in the scattering processes. We implement a modified Ott, Grebogi, and Yorke chaos control
scheme, based on a low-dimensional Hamiltonian model of the flow, to capture and stabilize a concentrated
vortex around the cylinder. This point-vortex-based control model can successfully be applied in a viscous flow
when control is actuated by uniformly rotating the cylinder and actively changing the background flow velocity
far from the body. We demonstrate that such a control mechanism can simultaneously control the vortex
dynamics, and also suppress the vortex shedding. An analysis of the vortex—boundary-layer interaction is
presented to explain the absence of vortex shedding during control simuld8di63-651X98)10508-1

PACS numbgs): 47.32.Cc, 05.45:b, 47.52:+j, 83.50.Ws

[. INTRODUCTION viously [8] that by a proper control algorithm such a vortex
can be stably captured near the cylinder. A more interesting
The interaction of fluid flows and vortical structures with result is that the controlled capture can successfully be
embedded bodies is an important research area in fluid ménplemented even for a distribution of vorticity, at corre-
chanics, with widespread applications in hydrodynamics angPonding parameter regimg8]. In this work a continuous
aerodynamics, and structural engineering problems. In recePrticity distribution was evolved according to the NS equa-

years, considerable effort has been made to control such fluiPns: coupled with inviscid *free-slip” boundary conditions

flows in order to improve the flow characteristics. The pos—girr'n LT:teCsy!Zdier:visslngaz?/b |-E?i§n 1%%rog/cowaswgé%1eeﬁjsqt$g|
sible applications include wake stabilization, lift enhance-

ment. draa and noise reduction. and mixin enhancemengifﬁcumes’ was aimed to study the qualitative correspon-
' g and nc o 9 ence of Hamiltonian dynamics for continuous fields.
and are attracting increasing intergst-5].

. Our aim in this paper is to similarly analyze the dynamics
The complexity of ,SUCh pontrol problems Ieads .to theof coherent vortical structures approaching a rotating cylin-
stgdy of reduced low-dimensional f[ovx{ models, which in cer-yqr in a viscous fluid at Reynolds number around-R600,
tain Ilmlts capture most of the qualitative fe_atures of vortex-gnd to develop a possible control mechanism to stably cap-
body interactior]6—-11]. These models provide a framework yre 3 vortex around the cylinder. First, we show that there is
where an active control algorithm can be easily develope@n interesting vortex scattering effect, and even a vortex cap-
and understood, before it is applied in a realistic fluid systemuring phenomenon, in the case of a rotating cylinder. These
[i.e., full Navier-StokegNS) equationg More importantly, phenomena have been previously pointed out in the Hamil-
recent advances in control theory of dynamical systems catonian vortex dynamics and in the inviscid flow. In the vis-
naturally be applied in these reduced low-dimensional fluidcous case, however, they have a completely different physi-
systems. In particular, the method developed by Ott, Greeal origin: the vortex—boundary-layer interaction, which
bogi, and Yorke(OGY) [12] has already proven to be suc- plays an important role in the vortex dynamics.
cessful in several applications, such as controlling a magne- Secondly, we demonstrate that by proper perturbations to
toelastic ribbon [13], a thermal convection lood14], the flow it is possible to control a vortex passing by a cylin-
chemical reactionfl5], solid state devicel6], and chaotic der. The basic requirement we impose for such a control
lasers[17]. algorithm is that it be implemented only through physically
One of the simplest models for the interaction of a bluff motivated boundary conditions. This leads essentially to two
body with concentrated fluid vorticity is that of a single mechanisms in the framework of our model system: one can
Hamiltonian point vortex interacting with a two-dimensional either rotate the cylinder and/or change the uniform back-
(2D) cylinder. This system has been extensively stufi&l,  ground flow velocity far from the bodi.e., the translational
and it is known to exhibit several remarkable features includvelocity of the cylindey. The other parameters of the prob-
ing a chaotic capturing phenomenon. It has been shown préem, such as the circulation around the body or the vortex
strength, are not experimentally accessible parameters in a
realistic viscous flow, and thus they cannot be used for con-
*Also at Department of Physics, University of California, San trol. Other forms of control, such as blowing and suction on
Diego, La Jolla, CA 92093-0319. the cylinder surface, are not studied in this paper. They are,
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however, likely candidates for alternative control actuators,
as they have been used with success in other flow control
problemg[7]. In this paper we use small changes in the uni-
form background flow velocity far from the body as control

actuator. We show that these perturbations combined with a udu,
uniform rotation of the cylinder can successfully control the

vortex and simultaneously stabilize the boundary-layer dy- =
namics. -

In our analysis we first review the Hamiltonian vortex -
dynamics, and implement the control algorithm for the point- S
vortex system by using perturbations of the background flow *
velocity far from the body. In order to clearly understand -
what the particular effects of the finite-size vortex patch, of -

the diffusion of vorticity, and of the vortex—boundary-layer
interaction on the vortex dynamics and control in a viscous
flow are, we review in some detail the free-slip vortex dy-
namics. The free-slip numerical simulations are designed to
understand the vortex dynamics and control for a vortex
patch in the presence of viscosity but without a boundary

layer on the cylinder surface. Next, we analyze the vorte owever, in the viscous flow we are interested in simulations

dynamics in a viscous flow around a rotating cylinder, andy, ime seales much shorter than the typical spin-up time of

show the influence of the boundary layer on the vortex dy'the fluid around a rotating cylinder, as a first approximation

namics. Finally, these results are used to develop the contr%e effect of the cylinder rotation can be neglected if the
procedure for the vortex dynamics. vortex does not come very close to the cylinder surface.

Ih's gaper IS orgaglzed "’tls :‘ollow;. In the PeXt slect:tlgnfthe The equations of motion for the vortex dynamics are of
vortex dynamics and control problem is formulated fory .\, itonian form:

Hamiltonian point-vortex dynamics. Section Il is devoted to

the numerical procedure for solving the Navier-Stokes equa- . 10H . 1 9H

tions for free-slip and no-slip dynamics. In Sec. IV an analy- r=-——, and =———. ()]
) : . . r de ror

sis of the free-slip vortex scattering and control is presented.

Section V is devoted to the vortex scattering dynamics in g qation(2) corresponds to a one degree of freedom autono-
viscous flow. The control algorithm for the viscous case isy,o,us Hamiltonian system that is always integrable. With
described in Sec. VI. A detailed analysis of the vorteXgmg)|  time-dependent perturbations introduced into the
boundary-layer interaction and the stability of the bo“ndarybackground flow, however, E€) has the same structure as

layer during control is presented in Sec. VII. Section VIl {4t of a driven one degree of freedom Hamiltonian system

. K

FIG. 1. Schematic diagram of the idealized flow.

contains our concluding remarks. that is known to generically exhibit chaos. Thus the vortex
approaching the cylinder can be captured and exhibit com-
Il. THE HAMILTONIAN MODEL plicated, chaotic motion around the cylinder fofigite time

The Hamiltonian model consists of a circular boundar before it is transported away downstreq,19. This be-
- : Ypavior is a hydrodynamic manifestation of chaotic scattering
centered at the origin of the coordinate system, embedded Bo] or more generally, of transient chagd]
leijsng?]:jm (?ii;l:]gr?nuphde T;Wa%];g;l%%ggon Fgralfl \tlsetg(lasxo A detailed analysis of the phase space of the above system
assume 2 oss?ble var ing erturbatian, tg.thé uniform reveals a simple flow topologyl8]. To illustrate our control
p rying pet . g strategy, we choose a simple autonomous system with fixed
background flow velocity. A point vortex of circulation is

X . g=—2.962 96, and =0 that produces a single saddle point
advected past the cylinder by the background flow, startmggt (0~3) in Euclidean coordpinate[sFig. 3(a)]9 The contr%l

ggtsérse?g)olég?egygn?ﬁg énlir':gg;jiggiﬁ;iogil d%ﬁfrbggg_rdi'technique presented in this paper is independent of the spe-
ground ’ﬂO\;VU the Hyamiltor):ian for the vc(;rtex dynamics is cifi_c choice of the parameter. The tgchnique relies on the
given by[18] o existence of at Ieast one saddle' pollnt whlch can be found at
any parameter regime. The solid lines in Figa)3are the
constant energy lines of the Hamiltoniat). Since the en-
1— i sing+ Eln(rz— 1), (1) ergy is conserved during the motion, they also correspond to
r2 2 the vortex trajectories. We emphasize that these lines are not
the stream lines of the flow. The stream-line pattern depends
where the first term is due to the background flow, and then the actual vortex position, and is changing in time as the
second term to the flow induced by an image vortex. Herevortex is advected past the cylinder.
o= kl2wRyuy is the nondimensional vortex strength. The  Our aim here is to capture and stabilize the passing vortex
parametek = dug /U, represents the rescaled perturbation ofat this fixed point by utilizing the OGY method of chaos
the background flow. Note that the possible rotation of thecontrol. Briefly, the OGY method stabilizes one of the many
cylinder is not included in Eq1). This could be modeled by unstable periodic orbits or fixed points which are inherently
including a uniform circulation around the cylinder. Since, present in the dynamics of the system. For unstable fixed

H=—(1+¢&)r
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- @
Pal M | sr—0s=0
P is the Jacobian matrix evaluated at the saddle point. The
vector
JA
G= e )
& lsr=0e=0

gives the effect of small perturbations on the dynamical sys-
tem. After a short evolution timAt, the new vortex position
becomes

Sr(t+At)~[1+JAt]or(t) +GAte(t). (6)
FIG. 2. Schematic diagram of the saddle pdihand its stable
and unstable manifoldsolid lineg in the phase space. Under small To achieve control, the vortex dynamics is perturbed in
perturbations the fixed point moves alo@to O’. The control  such a way that the vortex starting upstream of the cylinder
algorithm requires a perturbation that brings the original poftt  is driven along the stable eigendirection in the vicinity of the
close to the stable manifold. The perturbed system is shown byixed point. Lete, and e, denote the stable and unstable

dashed line. Due to the applied control the trajectory approaches thgigenvectors of the Jacobidn respectively. We define the
stable manifold of the unperturbed system along the dotted line. gy ariant unstable eigenvectyr by the relations

points of hyperbolic charactefalso called saddle points

there exists a curve along which the fixed point can be ex-
actly reached, named the stable maniffl@]. The control  The size of the perturbation is evaluated from the condition
consists of small perturbations applied in such a way as tgnhat the projection ofr on the covariant unstable eigenvec-

drive the actual trajectory close to the stable manifold of theor f, of matrix J should decrease each time control is ap-
desired orbit(cf. Fig. 2). In this way, we take advantage of plied [Fig. 1(b)], i.e.,

the naturally attractive dynamics around the stable manifold
to reach the unstable fixed point. Since the stable manifold is fy-or(t+At)=(1—B)f,- or(t). 7
typically a set of measure zero, and it cannot be reached
exactly, control is repeated at discrete time stépso apply ~ The parameteg is smaller than one, and is chosen to be a
corrections. Here we will restrict ourselves to controlling afunction of the distancgsr| in order to control the magni-
single fixed point, and not the full transient chaotic dynam-tude of the perturbation during the targeting procedure. The
ics. The method is nevertheless the same, and can be direcfi§quired perturbations can then be expressed as a function
applied for the chaotic case as well. of the positiondr relative to the fixed point in the following
The control procedure described above is capable of corway [8]:
trolling the vortex dynamics if the vortex initially starts in
the vicinity of the fixed point, where a linear approximation e(t)= _()\ I ﬁ
of the dynamics is valid12]. In open flows, however, the YAt
probability that the vortex will pass by a close neighborhood ] ]
of the fixed point is typically very small. Only a small frac- wherel , is the unstable eigenvalue &f In the present paper
tion of initial conditions lying around the stable manifold @n €xponential dependenge=exp(—y|dr[) has been used,
satisfy this condition. To demonstrate this one could star@lthough the qualitative results are not apparently dependent
with a large number of initial conditions and wait until one ©n the particular functional form. .
of them falls in the preselected neighborhood of the desired Figure 3a) shows the dynamics of a point vortex under
orbit, as transient chaos has been first contrdieg]). Alter-  the perturbationd8). The parameters,, G, and A, have
natively one can implement a targeting algoritfi28] that ~ been determined analytically from Ed$) and(2). The time
drives the vortex to the fixed point, not necessarily with€evolution of perturbations to the uniform background flow
small perturbations. are shown in Fig. ®@). One can clearly observe that the
Such a targeting algorithm has been proposed in [8&f. ~ control algorithm drives the vortex_a_lqng the stab]e direction
It takes advantage of the robustness of the flow topology t&0 the saddle point. Except for the initial perturbations during
large perturbations that is observed in our model system, i.ethe targeting procedure, only extremely small perturbations
the saddle-point-like structure is preserved even for larg@re needed to keep the vortex at the saddle point. In the
perturbations. It =A(r,e) represents the dynamical system example §hown in Fig.(8) Fhe maximum value of the per-
of Eq. (2), the dynamics in the vicinity of the fixed point can turbation IS quite large during the targeting procedwga((
be approximated by the linearized equation ~1.6)_. 'I_'h_ls is _due to the faqt that if _the dynamics is not
chaaotic, it is typically not possible to drive the vortex trajec-
Sr=J6r + G, (3) tory to the stable manifold by small perturbations only. One
can, however, optimize this targeting procedure by properly
where the actual vortex position relative to the fixed point ischoosing theB(|dr|) function. Depending on the particular
ér, and objective, one can attempt to either minimize the largest per-

f,re,2=1 andf,-e=0.

f,-or(t)

WG ®
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— \ v, Py and v, p 9
0 for the radial and tangential velocities, respectively. The NS
> equations rendered in dimensionless form are
-2
dw 1/ dw Y dw 1
o _Yowse shae) Lo, g
-4 ot p\dp dp JI¢ dp Re
o202 w=—V2y, (1)
5 where the Reynolds number ReigR,/v andv is the kine-
matic viscosity.
(b) To ensure high grid density_ in the physically ir_1te_resting
region (close to the bodya radially stretched grid is intro-
w1 duced. Such a grid maintains high resolution close to the
cylinder yet can still extend to large distances, to simulate a
real open flow. In particular, we usg=In[(r—1+a)/a] as
0 [ the new radial coordinate with being a stretching param-
eter.
0 70 20 30 20 50 The main component of the flow field is due to the back-
t ground flow, and can be derived from the inviscid stream
function:

FIG. 3. (a) Typical flow topology: vortex flow lines with arrows
indicate direction of the vortex motion. Small circles indicate time 1
evolution of a point vortex under the dynamics of the control and Yo(p,p)=—(1+¢)p ( 1- —2> sing. (12
targeting scheme. Initial vortex position {8.0, —4.0), ando= p
—2.962 96. The control time interval ist=0.1 and the targeting
parametery=1. (b) The perturbation to the background flow ve-
locity during control.

To simplify numerical calculations we rewrite the NS equa-
tions to evolve only the corrections to this flow. The result-
ing equations are somewhat lengthy and are omitted here for
)l;revity. They are, however, identical to those in Re&4]
and the reader is referred there. The time evolution is com-
puted using a third-order Runge-Kutta scheme with fixed
step sizg 24].

On the outer boundary of the computational domain the
boundary conditions are set to match the inviscid solution far
from the body, i.e.,

turbations or to achieve a smallest cost solution, e.g., b
minimizing [e(t)dt. Alternatively, in a real fluid system one
can also impose restriction on the maximum allowed accel
eration of the cylinder, i.e., one can limlite/At to reflect
limitations due to the inertia of the cylinder.

During the control part, the size and frequency of the
maximum perturbationfthe three spikes in Fig.(B)] de-
p_end_on the preci_sion of measurementsof Higher prec_i- P Prmaes ) = Yol Prmas B)- (13)
sion in ér results in more frequent and smaller magnitude
perturbations. If the absolute precisiondsthe maximum Details of how these boundary conditions are numerically
perturbation scales asya— {(A,+1/At), and the time in-  implemented can also be found in RE24].
terval between spikes a@stgpies— (IN /N,

Our aim in this paper is to analyze the corresponding A. Details of the free-slip simulation
vortex dynamics and control as above in a viscous flow. Due ) . )
to the complexity of the problem, we first analyze the vortex | "€ Physical boundary conditions on the cylinder surface
dynamics with inviscid free-slip boundary conditions, and in'€: in the free-slip case,

a second step we concentrate on the viscous case. The next 9

: ; : . o
section details the numerical procedure for both the free-slip _ =0. (14)
and no-slip simulations. I p=1

Numerically this is implemented ag(p=1,4)=0. Addi-
tionally, as suggested in Ref25], the numerical boundary
condition dw/dp=0 is imposed on the cylinder boundary,
In our numerical analysis we use a pseudospectral evoluwhich correctly reproduces an inviscid dynamics.

tion scheme discussed previously in R&4]. The NS equa- As the initial vorticity field for the control simulations, we
tion is solved using a vorticity-stream function representatiorused a localized Gaussian distribution of vorticity
(w, ) of the flow implemented on a polar grid centered on~exd(r —r,)2/26%]centered on a point, far from the cyl-
the body. The scheme uses a finite-difference approximatiomder, of typical transversal siz& The initial position of the

in the radial direction and spectral decomposition in the anGaussian vortex was in the vicinity of the stable manifold of
gular direction. The velocity field in polar coordinatgs ¢) the fixed point of the background point-vortex model, to
is given by avoid artificially large initial perturbation during the target-

IIl. NUMERICAL SOLUTION OF
NAVIER-STOKES EQUATIONS
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ing procedure. The extensiofl of the distribution ranges culation, on the outer edge of the domain. The artificial con-
from 0.2 to 0.6, so the size of the vortex is comparable withstraint of condition(13) would require creation of additional
that of the cylinder. circulation. The only mechanism by which additional circu-
The positionry(t) of this extended vortex, required for lation can be created is by vortex shedding from the cylinder
the input to the control algorithm, is computed as the centesurface. Thus the placement of the vortex in the computa-

of vorticity in a domainD(t) around the vortex: tional domain would result in an impulsive vorticity genera-
tion and consequent impulsive shedding even if the vortex is
fD( )r'w(r/)g(_ w(r'))d?r’ placed far from the cylinder. To maintain the circulation bal-
t

(15) ance, conditior{13) should be replaced by a condition where
the actual value of circulation around the domain is imposed
explicitly. Instead, for numerical convenience, this is done

whereAT is the time step for numerical integration aBt) by introducing a second vortex of equal strength and oppo-

is a disk of radius 2 centered on the vortex position at time Sit€ Sign far downstream which maintains the vorticity bal-
t, i.e. ro(t). The functionf(w)=1 for >0 and #(w)=0 ance in the computational domain. This additional vortex

d- does not influence directly the vortex dynamitss far from

the upstream vortgx but successfully balances the circula-
appears only in the no-slip simulationsn a realistic con- tion in the comput_atmnal _domai_n. The positio_n of the vortex
troller such an input should come from instantaneous physiPlaced upstream is monitored in analogy with the free-slip
cal measurements, such as multiple pressure observatiof@S€ UsSing EQ15). »
and/or velocity monitoring. It has been shown previously _The drag and lift coefficient€, andC, are computed as
that the vortex dynamics can be entirely reformulated in 6[28]
pressure-measurement space, by recording two or three point

ro(t+AT)=

I oy @(r) 0(= w(r"))d?r’

for <0, is used to weight the positive vorticity only, avoi
ing confusion with the opposite-signed shed vorticishich

2
pressures on the cylinder surfaf@6]. Then a control algo- CDZJ de(—p cos¢—5p¢sinqb),
rithm analogous to the one described here can be applied in 0 (17)
the pressure space without relying on actual vortex position
[27].

2 - -
C. = do(—psing+o,4C08¢),
0

B. Details of the no-slip simulation ) . o
where the first and second terms describe the contributions of

Tthe _ph?/sicallpoundgrty conditions on the cylinder surfacgpe pressure and shear stress forces, respectively. The dimen-
are typical no-siip conditions, 1.€., sionless quantitiep and o, are defined as

Y Y
% =0 and % =(), (16) ~ p 1 ¢’d Jw
p=1 p=1 p—m—R—e . GD%(P—LQD) (18

where() is the angular velocity of the cylinder, measured in

the counterclockwise direction. These boundary condition?nd

can be used to specify the stream function and the vorticity at . R

the boundar_y. A_s n_umerlcal boundary condition fo_r _the == ;d’ _ _O[w(p:1,¢)+m_ (19)
stream functiony=0 is used. The value of the wall vorticity pusR, Re

is obtained by inserting conditior{$6) in Eq. (11), specified

at the wall and using a standard second-order estifi2dle  Here is the density of the fluid.

To ensure physically self-consistent initial conditions for  To test the numerical procedure, several runs were carried
the vortex dynamics, and to avoid the transient effects obut for different values of) at Re=500 with no controlled
wake generation during the control process, we first comput@ortex present. The time evolution of the drag and lift coef-
the solution for a fU”y developed wake with no controlled ficients was monitored. We have found good agree[‘[@ﬂt
vortex present. To break the initial symmetry of the wakewith the coefficients measured by Chetval. using a hybrid
(which is unavoidable for symmetric initial conditionthe  vortex schemé28].
cylinder was impulsively rotated back and forth during the
first few time units and stopped afterwards. The relaxation
toward a periodic solution is checked by monitoring the evo-
lution of forces on the cylinddrcf. Fig. 15a)]. Before applying the control scheme in a NS flow, we have

After this, a Gaussian distribution of vorticity is superim- to determine whether the basic features of the point-vortex
posed on the vortex street solution centered at a pgifar  flow topology are still preserved in the NS flow. Such an
upstream of the cylinder. In the numerical scheme this coranalysis has been presented previously for the free-slip case
responds to a vortex that suddenly enters the finite computd19]. Here, we briefly reexamine some of the important re-
tional domain. In response to this event the total circulatiorsults with a control implemented by changing the uniform
contained in the domain grows by a quantity equal to thebackground flow velocity at infinity.
vortex circulation. Previous results on vortex scattering around a cylinder

This fact cannot be accounted for by the boundary condiusing free-slip dynamics have shown a strong correspon-
tion (13) which imposes the irrotational field, with zero cir- dence to the Hamiltonian vortex dynamid®] if the vortex

IV. FREE-SLIP DYNAMICS AND CONTROL
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FIG. 4. Time evolution of a small vortex of siz&=0.25, with FIG. 5. Time evolution of a large, extended vortex of siZe
free-slip dynamics. The vorticity field is shown at time intervals of =0.6, with free-slip dynamics. The vorticity field is shown at time
2. Constant vorticity lines are shown in incrementsogf,/10. The intervals of 2. Constant vorticity lines are shown in increments of
initial vortex position i5(3.0, —4.0),0=—2.962 96, and Re1000. ®mad10. The initial vortex position 3.0, —4.0), o= —2.962 96,
One grid cell corresponds to a unit square. and Re=1000.

patch size is small§<0.5). It has been shown analytically to the background flow velocity at infinity in the same spirit
in Ref.[19] that the correction to the Hamiltonian dynamical as for the point-vortex case. The position of the vortex re-
equations is of ordeﬁg, where7q is a small parameter char- quired to evaluate the perturbation is obtained as the center
acterizing possible internal degrees of freedom of the vortexf vorticity of the controlled vorteX15). Thus the action of
(e.g., ellipticity). This can also be observed in Fig. 4 wherethe controller is determined solely as though a point vortex is
the time evolution of the vorticity is shown for an initial present at the center of vorticity of the extended vortex.
patch size of6§=0.25. The Reynolds number is R&000. To test the validity of the control scheme in the free-slip
The vortex maintains coherence as it is advected past thieamework, we place a blob of vorticity with initial condition
cylinder and the center of vorticity closely follows the (xq,Y)=(3,—4) and §=0.6 for Re=1000. A grid of 128
Hamiltonian trajectory. If the vortex is extende&*0.5) the X128 is used with stretching paramete+ 0.2, domain size
interaction is significantly more complex. This can be ob-p,,=100, and the time step for numerical integration of
served in Fig. 5, where the vortex dynamics in the case of th€.01. We first evolve the vorticity profile without the control
free-slip boundary conditions is plotted for a typical initial scheme, as shown in Fig(&. One can observe that the core
condition for a large vortex patch of siz&=0.6. During the  of the blob advects past the cylinder essentially following the
vortex-cylinder interaction process the initially strongly co- Hamiltonian flow lines in spite of the significant shape dis-
herent vortex is stretched, and some low-vorticity filamentgortion and detachment of the low-level vorticity. Then we
detach from the vortex and remain around the cylinder evemepeat the same numerical experiment, now with the control-
after the core of the vortex leaves the domain shown in Figler turned on[Fig. 6b)]. The vortex slowly approaches the
5. In this case only the core of the vortex patch of siee Hamiltonian fixed point and remains there for at least 30
=0.6 maintains coherence and follows roughly the Hamil-characteristic flow times. In spite of the fact that the con-
tonian trajectonycf. Fig. 6a)]. trolled vortex has a slightly distorted shape, the algorithm
Thus we expect that for spatially coherent vortices mostesults in the stabilization of the vortex very close to the
of the features of the point-vortex control can be readilyfixed point. Figure €) displays the applied perturbation to
implemented for NS free-slip dynamics. The only importantthe uniform background flow as a function of time. After the
inviscid process that cannot be modeled with a simple pointshort targeting period, the required perturbation is small,
vortex description is the vortex breakdown, when strongabout 5% of the background flow velocity. With a perfect
shearing fluid motion breaks away a large extended vortexnpodel of the flow the perturbations would go to zero in the
or some strongly stretched vortex filaments. As we will sedong time limit. The discrepancy is due to the fact that the
below[cf. Fig. 6d)], however, there are no regions of strong shape distortions are not included in the point-vortex model
shear in the vicinity of the target saddle point, and thesen which the control algorithm is based. Note that while an
effects do not play an important role during control on timeelliptic vortex like the one in the final stages of control is
scales shorter than the viscous time. expected to rotate, this one does not have a rotational mo-
To achieve control, external perturbations are introducedion. The absence of rotation can be explained from the to-
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FIG. 6. (a) Evolution of vortex core for the dynamics of an ) ) ) o
uncontrolled vorticity distribution with free-slip dynamics shown in _ FIG. 7. Vortex scattering with no-slip boundary conditions at
detail in Fig. 5. The corresponding point-vortex trajectories areRe=1000. The trajectory of the center of vorticity for vortex scat-
shown by thin dashed linéb) shows the controlled dynamics. The t€ring with different impact parameters is shown or-0. As ini-
vortex is stably captured at the unstable fixed point of the Hamil-ial vortex coordinate, =5, —6<y,=0 has been used. For com-
tonian flow situated at (6;3.0) in Euclidean coordinates. As initial Parison solid lines in Fig. @) display the vortex trajectories for
conditions,(3.0, — 4.0), o= — 2.962 96, and sizé=0.6 have been Hamiltonian dynamics.
used. One contour level correspondingdg,/2 is plotted every

unit of time. Thick dashed lines correspond to additional vorticity |ess parametesr=QR,/uy, i.e., the ratio of the velocity of
contours of 0.3 and 0.1 @bmy at t=30. The figure clearly indi-  he cylinder surface to that of the background flow at infinity.

cates that the control scheme is stable even for a large vorticity'-he vortex shedding, drag, and lift coefficients have been
distribution, and a close correspondence with the underlying Hamil- ' '

tonian system(c) Time evolution of the control parameter: the extensively analyzed faw values ranging from 0 to (28],

perturbation to the background flow velocitd) Stream lines of the In this section we focus our attention On the dynamics of an
flow in the controlled case at=30. external vortex that approaches the cylinder from upstream,

interacts with it, and then is advected downstream. Such a

pology of the stream lineEFig. 6(d)], which is essentially ~VOrtex could originate from vortices shed by other bodies
similar to the stream-line pattern for a vortex pgg6]. The  Placed far upstream. This vortex dynamics can be regarded
vortex takes on the shape of the stable stream-line patter@s a kind of scattering process, with a very simple dynamics
Figure Gd) also shows that there is no shearing motion(uniform advectiohfar from the cylinder, and a highly non-
around the controlled vortex and thus the only mechanism byrivial interaction close to the cylinder. With the initial vor-
which vorticity can be lost is by diffusion beyond the circu- tex coordinatex, fixed, y, can be regarded as an impact
lar stream-line pattern. On the time scales of our simulatiopparameter that characterizes the scattering process.

this is minimal and thus there is no significant loss of vor- There is an additional parameter in the problem, the phase
ticity during control. This numerical experiment demon- of the beginning of the simulation relative to the periodic
strates that the topology of the underlying Hamiltonian dy-vortex shedding. Since the vortex approaching the cylinder
namics is still exhibited in the free-slip case. The vortexstrongly disturbs the vortex shedding, we have found that the
itself remains stable under the applied perturbations in spitehase is not an important parameter in the simulation.

of the shape distortion and diffusion of the original Gaussian Figure 7 displays vortex trajectories with different impact
vorticity profile. parameters ar=0 (no rotation. For comparison Fig. (8)

For the free-slip control the capture time is determined bydisplays the vortex dynamics for the Hamiltonian system.
the viscosity. On viscous time scales the concentrated vortekhe basic difference comes from the vortex—boundary-layer
patch diffuses away and eventually will be broken away byinteraction. Figure 8 shows the time evolution of the vortic-
shearing fluid motion. Since this time scale is on the order ofty field for the trajectory marked in Fig. 7. As the vortex
1000 time units we have never been able to reach this staggpproaches the cylinder on a trajectory similar to the Hamil-

in our numerical simulations. tonian dynamics, at a critical distance from the cylinder sur-
face a secondary vortex of opposite sign is induced in the
V. VORTEX SCATTERING IN A VISCOUS FLOW boundary layer, which pairs with it and is advected away.

Since the strength of the two vortices is not the same, they
We now examine the vortex scattering in the case of notravel on curved trajectories. The vortex trajectories can typi-
slip boundary conditions on the cylinder surface, when thecally intersect themselves or other trajectories, since the ve-
cylinder is rotating counterclockwise with uniform angular locity field depends not only on the actual vortex position but
velocity ). This rotation is characterized by the dimension-rather on the entire trajectory, i.e., the whole history of the
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FIG. 8. (Colon Time evolution of the vorticity field for the trajectory marked in Fig. 7. The vorticity contours are shown in green and
blue for positive and negative vorticity, respectively. The vorticity increment between consecutive level lines is 5, starting with 2.5 and

—2.5 for green and blue lines, respectively. The cylinder is shown in red. The time between consecutive instants of vorticity field is 2. A
256x 200 grid has been used in angular and radial direction, respectively, with a step size for integration of 0.001. The stretching parameter

wasa=0.2 and the radius of the computational domajg,,=100. The size of the initial Gaussian profile wds 0.25 and the vortex
strengtho=—2.962 96. One grid cell corresponds to a unit square.

time evolution. Interestingly, Fig. 7 suggests that there is atime scales, and for distances not too close to the cylinder
envelope of these trajectories that defines a region around ttseirface, the vortex dynamics is not directly affected by the
cylinder that is not accessible for vortices coming from out-cylinder rotation. The rotation does, however, influence the
side. vortex dynamics through its effect on the stability of the
Next, we focus on the case of a rotating cylinder. Toboundary layer. We note here that the cylinder starts to rotate
understand the scattering process in the presence of a rotatapulsively at timet=0, when the vortex is placed upstream
ing cylinder, we recall that the spin up of the surroundingof the flow at coordinatesxg,yg). Apart from numerical
fluid at radiusp from the origin takes place on a time scale of convenience, this seemingly arbitrary relation between the
order Rep— 1)2. Thus the typical time scale can be assumedstart of the spin and the position of the vortex will be re-
to be of order of Re. This is much larger than the time agarded as part of the control actigeee next section The
vortex spends around the cylinder before it is transportedietails of the actual vortex dynamics may subtly depend on
away by the background flow. Therefore, on relatively shortthis choice, but we observe no qualitative differences as long
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Eulerian dynamics, the interaction with the boundary layer as
the vortex comes close to the cylinder induces some new
interesting effects, i.e., the presence of a region not acces-
sible for vortices approaching from upstream, and also a vor-
tex capturing effeci27]. We plan to present a detailed analy-
sis of this scattering process in future.

VI. VORTEX CONTROL IN THE VISCOUS CASE

The numerical experiments in the preceding section sug-
gest that the boundary-layer dynamics depends strongly on
the rotation parameter. The larger the the longer is the
typical time scale on which a large secondary vortex forms.

< At large « values the boundary-layer dynamics does not
couple with the vortex dynamics. Even at 4, there is no
5 e secondary vortex shed as long as the vortex approaching the
-4 s -2 0 1 2 3 4 cylinder is about one cylinder radius away from the cylinder

surface. On the other hand, on time scales much smaller than

FIG. 9. Vortex scattering with no-slip boundary conditions. The Re, the velocity field at the target fixed point is not affected
trajectory of vortices with different impact parameters is shown forby the cylinder rotation, and thus our Hamiltonian mods!
a=4. is expected to be valid in the vicinity of the fixed point.

These arguments have resulted in the following formulation

as|ro|<Re (herer, denotes the initial vortex positipfi27].  of the control algorithm: let the cylinder be rotating at con-

Figure 9 shows the vortex scattering for different impactstanta throughout the control procedure in order to prevent
parameters for a rotating cylinder at=4. One can observe secondary shedding of strong opposite-signed vorticity. Si-
that the vortex can now come significantly closer to the cyl-multaneously, the perturbation to the uniform background
inder surface. The trajectory marked with an arrow indicateglow velocity at infinity dug is changed as a control param-
the existence of a saddle-point-like structure below the cyleter. The required perturbation is evaluated based on the ac-
inder at some instant of time. The time evolution of the vor-tual vortex position, assuming the ideal Hamiltonian flow
ticity field corresponding to this trajectory is shown in Fig. approximation, Eqs(1), (2), and(8). Such a numerical ex-
10. The boundary layer is stable when the vortex is relativelyperiment is presented in Fig. 13. The corresponding control
far from the cylinder surface, but a large positive-signed vorperturbation in the background flow velocity field is shown
tex is shed as the scattered vortex comes close to the cylindar Fig. 14.
surface. In Fig. 13, as control is applied the vortex approaches the

Figure 11 displays the vortex scattering @t 10. Here target saddle pointmarked by a crogsalong the stable
the overall flow structure has some similarities to the Hamil-eigendirection. Due to the constant rotation of the cylinder
tonian case, as vortex trajectories typically penetrate théa=4), the vortex shedding gradually diminishes and finally
wake of the cylinder. There is a limiting curve for incoming disappears around= 12 [plate(g)]. The vortex settles down
vortex trajectories similar to the separatrix in the Hamil-on the fixed point and remains stable throughout the simula-
tonian case, that divides trajectories passing below and abow®n. Correspondingly, the magnitude of the perturbation
the cylinder. One of the significant differences is that severaslowly decreases, but asymptotically does not reach the zero
initial conditions lead to a finite-time vortex capture. The value. This effect is due to the simple form of the control
time evolution of the vorticity field for one of these captured model of the flow, which does not take into account the
trajectories is shown in Fig. 12. In the point-vortex dynam-additional vorticity in the boundary layer, and to the small
ics, such finite-time vortex capture has been observed for abut non-negligible effect of the cylinder rotation on the ve-
oscillating cylinder only. In the Hamiltonian dynamics the locity field at the target point. These additional effects lead to
origin of such capture is the explicit time dependence of thea renormalized unperturbed background flow velocity that is
equations of motiori2) that leads to the formation of a cha- slightly smaller than 1, as also suggested by the small nega-
otic saddle in the vicinity of the cylindg0,30,31. In the tive asymptotic value of the perturbation ©f0.3. In fact by
case of a viscous flow there is an implicit time dependence oéstimating the position of the fixed point and the eigenvalues
the dynamics due to the vortex—boundary-layer interactionand eigenvectors from the Navier-Stokes scattering simula-
Moreover, since the captured vortex comes close to the cykions, rather than from the Hamiltonian model, one can fur-
inder surface, it is affected by the fluid that is spinning up inther reduce the magnitude of the perturbations. Such a simu-
the vicinity of the rotating cylinder surface. This also con- lation is presented in Ref27], where the control parameters
tributes to the fast rotation of the vortex around the bodyare extracted from the marked trajectory of Fig. 9. The re-
Note that there is no significant vortex shedding during suclguired perturbations for control are decreased by an addi-
a capture process. tional 50%[27].

In this section we analyzed the vortex scattering on a During the control procedure the overall controlled vor-
rotating and translating cylinder in a viscous flow. While theticity is conserved. The vorticity in a large domain around
dynamics far from the body is described qualitatively by thethe controlled vortex changes less than 1% during the control
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FIG. 10. (Colorn Time evolution of the vorticity field withw=4 for the trajectory marked by arrow in Fig. 9. The parameters of the
numerical solution are the same as those used in Fig. 8.

simulation. The original compact Gaussian vorticity profile,increasing «. Figure 1%c) shows practically the same
however, diffuses away considerably as shown by the evoluasymptotic value for the lift coefficient at=10 as for the
tion of the vorticity contour lines in Fig. 13. one ata=4. Also, the ratio of the lift to drag coefficient is
The time evolution of the drag and lift coefficients is also actually decreasing fromr=4 to «=10 in accordance with
monitored throughout the numerical experiment. Figure 1%revious observations by Chest al. [28].
displays these coefficients for various valuesaofor both Figure 18d) shows the time evolution of the lift and drag
the controlled and the uncontrolled state. As a reference, theoefficients during the control procedure. There are two in-
time evolution witha=0 and no controlled vortex present is teresting observations. First, the mean lift coefficient is of
also shownFig. 15a)]. These are essentially the drag andnegative sign, e.g., the net lift force is toward the captured
lift coefficients for a cylinder uniformly translating in a vis- vortex. If the captured vortex would be of positive sign, the
cous flow. The periodic oscillations are due to the periodidtarget fixed point would lie symmetrically just above the
vortex shedding. When the cylinder is rotating counterclock-cylinder and correspondingly, the lift would be toward the
wise with «=4 a Magnus effect is observed and the lift vortex and of positive sign. This is similar to the case of a
coefficient is significantly increasdaf. Fig. 15b)]. Note, captured vortex over an airfoil, that is known to significantly
however, that the lift cannot be increased without bound byincrease the lift. Secondly, the drag coefficient is positive
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3 - ‘ - ‘ ‘ ‘ ; an external vortex, as suggested by the viscous simulations
in the preceding section. Previous results on the vortex—
boundary-layer interaction show that there are two basic
types of response of the boundary layer when a vortex passes
close to a wall32]. In the first case, when the vortex speed
is relatively low, there is no steady viscous solution. Second-
ary vortical structures develop on the wall, leading to an
eruption of the boundary laygB3,34. In the second case,
when the vortex moves fast relative to the wall, there is a
stable solution, although the boundary layer “thickens”
gradually[35,36. Here we show that the long-term stability
of the boundary layer observed in the experiments in Sec. VI
is due to an effect more subtle than the one leading to the
typical stable behavior mentioned above.

When analyzing the viscous response of the boundary
layer we assume that the control is active, as shown in Figs.
13(k)—13(p). Therefore the vortex remains stationary, and

% 3 -2 0 1 2 3 4 the cylinder is rotating with a constant angular velocity. For
x the boundary-layer dynamics, this means that the boundary

FIG. 11. Vortex scattering with no-slip boundary conditions. cqn.dmons can be considered as time independent for sim-
The trajectory of vortices with different impact parameters is shownPliCity.
for a=10. Let us first introduce the following notations for the ve-

locity components:
and small, which means the body translates practically drag-

free and it is even subject to a small thrust. We note that the W=v,, U=vy (20)
actual asymptotic value of the lift coefficient in the con- . )

trolled case is smaller than the one created by a simple MagIPr the radial and angular components, respectively, and de-
nus effect at corresponding angular velocifies Figs. 15b) ine the new boundary-layer scaled radial variables

and 1%d)]. The ratio of the lift to drag coefficient is, how- ~ P »

ever, significantly higher. We note that the controlled vortex- y=(p—1)Re"?,  w=wRe". (21)
cylinder system shown in Figs. (8—13p) has a very simi- . . .

lar stream function pattern to that of a translating dipole WithThe Prandtl equations, governing the evolution of the un-
the controlled vortex being one of the vortices and the Cyl_separated boundary layer, result as
inder playing the role of the opposite-signed vortex. The
forces we obtained in the NS simulations are consistent with

Ju ~du U dp, U

such a picture. at +W(9§/ YT e ay?’ (22
Figure 15%e) displays the drag and lift coefficient for a

controlled vortex when the cylinder is rotating at constant JW  du

a=10. This shows that the forces do not reach a stationary —+ == (23

value, but are oscillating periodically around the value mea- gy I

sured in Fig. 1&) for a=4. This is due to the fact that the é—lerep denotes the pressure outside of the boundary layer
vortex shedding does not disappear completely, as in Fig. 1 due to the inviscid solution at the cylinder boundary in the

and there is a small shedding of low-level vorticity that leads
to the oscillations in the lift gnd drag coefficients}f presence of the background flow and the vortex. The Ber-

The rotation of the cylinder is essential for the success o oulli equation implies, for a pressupe, at the outer edge of

the control. If the cylinder is not rotating, the vortex can be he boundary layer,
stabilized for extremely short times only. Soon after the vor-

tex reaches the target saddle point, an opposite-signed vortex

is shed from the boundary layer, pairs with the controlledrherefore Eq(22) expressed in terms of the inviscid veloc-

vortex, and subsequently the control fails. ity u.. on the cylinder surface can be written
The typical capture time for the no-slip simulations is

dp.,=—u,du,. (29

about 50 time units. On this time scale the boundary layer U _ou ou ou, J2u
thickens gradually and eventually a vortex is shed. At this — tW—=H+U—=Upy— + = (25
point the control is lost since the shed vortex usually pairs at aay I Id gy
with the controlled vortex and the vortex pair formed cannot .
be stabilized any longer. The boundary conditions are
Vil. THE VISCOUS RESPONSE OF u=a, w=0 aty=0 (26)

THE BOUNDARY LAYER
and

Our goal in this section is to show that there is a steady 5 5
solution for the boundary-layer equations in the presence of u(y,d,t)—u.(¢), asy—oo. (27
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FIG. 12. (Color) Time evolution of the vorticity field forw= 10 in the case of the trajectory marked by arrow in Fig. 11. The parameters

of the numerical solution are the same as those used in Fig. 8.

To increase precision in the physically interesting region We solve these equations numerically with a standard
near the cylinder wall, we introduce the radially stretchedfinite-difference method. The only input necessary for the

coordinaten= In[(y+b)/b], with b being a stretching param- Problem isa andu..(¢). The angular velocity of the cylin-

eter. Then the governing equatiof®5) and(23) in the new

coordinates become

d%u  du

an® 9n

U W du  du U, 1
— 4+ — —4Uu—=U,—+
ot pe7dn 120) d¢$  (be”)?

1 (9\7v+ au o
be? dn  JdP

(28)

(29

der « is constant, whileu,.(¢) depends implicitly on the
vortex position and background flow. Figure(&6shows the
typical inviscid velocity profile when the vortex is on the
target fixed point and the cylinder is not rotating, ie=0.

This profile has been obtained as a solution for the inviscid
problem with the controlled vortex placed on the target fixed
point, and a second opposite-signed vortex placed far down-
stream, to maintain vorticity balance, as explained before.
This profile shows the existence of four stagnation points.
One can observe that there is one region with strong adverse
pressure gradiertaround 1.6 ¢/ w=<1.7) where the second-
ary vortex is expected to devel¢p7].
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FIG. 13. (Color Time evolution of the vorticity field in the case of the controlled vortex dynamics withd. The overall controlled
vorticity does not change significantly during the control procedure. The decrease of the number of level lines is due to the fact that the initial
compact Gaussian profile diffuses away, i@increases gradually.

The numerical calculations are performed on a grid 36pendicular to the surface correspond approximately to these
X 64 in radial and angular direction, respectively. The outeistagnation points.
boundary is set at a large but finite valyg,,,= 4.0 with the Figure 1&c) shows the result of the simulation &t 2.0
stretching parametdr=0.5. The convergence is checked by for a rotating cylinder, at the typical value used during the
repeating the simulation on a larger grid>7228. No sig- control processx=4.0. One can observe the complete ab-
nificant differences have been observed. sence of the secondary vortical structures, in contrast to the

Figure 16b) shows the solution to Eq$23) and(24) at  case when the cylinder is not rotating. To understand this
timet=0.48. As an initial condition for the velocity field, we remarkable stability of the boundary lay&8], let us trans-
assume that the inviscid solution is valid throughout theform our problem to a frame comoving with the rotating
boundary. One can observe the newly developed backcirciboundary. The inviscid velocity and pressure profile seen
lating structure which later leads to an eruption of the boundfrom this frame will be similar to the one in Fig. (&, with
ary layer as seen in Fig(®&. Note that the “spiky” appear- one difference: in this comoving frame the vortex and the
ance of Fig. 1) is due to the presence of the stagnationbackground flow is rotating around the cylinder. This means
points on the cylinder surface, and the position of flows perthat the velocity and pressure profile is changing in time
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FIG. 14. Time evolutiqn of_ the control parameterduring the FIG. 16. (a) Inviscid velocity(solid) and pressurédashedl pro-
control procedure shown in Fig. 13. file on the cylinder surface fog =0, with vortex centered on the

target fixed point. The pressure is plotted in unitspuﬁ/Z, andpg
periodically. The region with positive streamwise pressurds thg pressure at infinity. These pr.ofiles.have been obtaingd as the
gradient from Fig. 1@) will have a negative pressure gradi- solution to the “free-slip” dynamics with a vortex of sizé

ent just after a period approximatey~ m/2«. If the cylin- ~ =0.25 placed on the fixed point. Stream lines of the boundary-layer
der is rotating fast enough, the outer edge of the boundar?'“i'%” Itrl thze gaboratory framéb) for a=0 att=0.48; and(c) for
a=4.0 att=2.0.

N

layer experiences an average pressure, without strong gradi-
ents. The actual criteria for stability could be formulated in
the following way: the typical time scale associated with the
-2 1 generation of the vortical structures in the case0, that is

0 20 40 60 80 100 on the order ot,~0.5, should be larger thag. In terms of

the cylinder rotation, this means that the angular veloaity

o

5 ®) should be larger than 1.6. In the limit of large the inviscid
of 1 velocity at the wall seen in the comoving framg(¢,t) can
sl ] be replaced by its time averaged vakig,(¢,t)),, that in
h 3 P m m %0 the first approximation is constant and no longer depends on

¢. In this way, the flow is similar to one occurring between
two concentric cylinders, when the inner cylinder is at rest
while the outer one is rotating with a relatively low, constant
N angular velocity.

|

Lift and drag coefficients
b o

o

10 20 30 40 50 VIIl. CONCLUSIONS

pal

@ 1 In this paper we studied the interaction of a large coherent
vortex with a translating and rotating cylinder. We showed
that in a viscous flow, there is an interesting and highly non-
trivial scattering effect of advecting vortical structures.
Moreover, in the case of a rotating cylinder, these vortices
can be captured for long periods. Based on the observations
of vortex scattering in viscous flows on the one hand, and a
control scheme previously implemented in inviscid flows on
-5 the other, we developed a simple control algorithm to stabi-
o 5 2 a0 lize an external vortex near a moving cylinder in a viscous
t flow.

FIG. 15. Time evolution of dragbold line) and lift (thin line) As a main result, we demonstrated that control of the
coefficients for(a) @=0, (b) @=4, and(c) «=10 when no con- Vortex dynamics based on a low-dimensional reduced dy-
trolled vortex is presentd) and (e) show the drag and lift coeffi- namical model, previously reported in Hamiltonian and NS
cients during control forw=4 anda= 10, respectively. Note, that free-slip” simulations, can be achieved in a viscous fluid.
the sign of the coefficients corresponds to the choice of the coordiWhile previous studies used the circulation around the cyl-
nate system in Fig. 1, i.e., positive drag or lift coefficient corre-inder as a control parameter, here we introduced a more re-
sponds to a force pointing in the positixeor y direction, respec-  alistic perturbation: small changes in the uniform back-
tively. ground flow velocity at infinity, combined with a uniform
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rotation of the cylinder. The perturbation in the backgroundbe controlled for more generally shaped bodies. In particular,
flow velocity corresponds to the change of the velocity of thethe flow over low-speed airfoils with an attached free vortex
cylinder translating in a uniform fluid at rest, and can behas attracted recent interep#0-42. These works have
implemented even in an experiment. The model systennainly focused on the stability analysis of the vortex dynam-
shown in this paper is a remarkable example of how somécs. Others have studied this problem using a leading-edge
complex fluid flows described by partial differential equa-flap [43—43 or blowing and suction on the airfoil surface

tions, which are inherently infinite dimensional, can be con{46] for flow modifications. These attempts, however, are not
trolled using a simple low-dimensional model of the fluid aCtive control schemes. It is known that unstable fixed points

flow. of the vortex dynamics can be found in the Hamiltonian

The success of the control is due to the disappearance Hfoldei of a vortdex overa ?JOUkOVr\:Ski airfcﬁiﬂ]. Whi'lgl con- h
the vortex shedding which results from the stability of thelr® c')l Vf?”ex )(/jn?mms n Sclj".c states IS pios§| F n t'e
boundary layer. We studied this boundary-layer dynamics irjjamiltonian model system, direct numerical simulation is

detail, and showed numerically that under the applied pertur?€€ded to study the corresponding control problem in vis-

bations the boundary layer is stable, and thus no significarﬁOus ﬂowg. “.q Some a.ppllcatllons, a vortex stab_ly attag:hed
vortex shedding is expected during control. We note her Ver an a|.rf0|I is of primary interest since relat!vely high
that the same reasoning which leads to stability of the boun evels of ift can be' ach|evetﬂ48]: In other'appllcatlon.s, .
ary layer in the presence of the controlled vortex can bé'©Wever, _the forma’qon an_d trapping of vortices over airfoil
carried out without the presence of an external vortex, in th urfacr?s IS fnf?tl dedswed, smgg th% detachmefnl'_[f of the vortex
case of a rotating and translating cylinder. This suggests th fom the alrh0| ‘%a stoasu I efr} eF;(eZaS(Ia 0 hl t, sometimes
the vortex shedding should disappeawaabove some criti- nown as the “dynamic stall effect[32]. In these cases,

cal valueea, . In fact such disappearance of the vortex shed—aCtiVe control methods could play _another role, namely, to
ding has been pointed out in experiments by Jaminet anfrevent metastable capture by driving the vortex toward the

Van Atta[39] at low Reynolds number flows around a rotat- unstable direction m_stead of the_ stable one. .
We must emphasize that, while most point-vortex and in-

ing cylinder. Their observation shows that the critical value . " :
of the rotation parameter increases with the Reynolds num\fISCId results can be readily extended to more complex bod-

ber but has a plateau af,=2 starting at Re-80, above les using conformal mappings, the viscous results cannot be
which the critical rotation \(;elocity no longer depe,nds on thelmmedlately generalized. The stability of the boundary layer

Reynolds number. This result is in qualitative agreemen{whICh is the key to our successful control methdepends

with our explanation, since the boundary-layer argument preg,trongly on the parti_cular geometry con_side_red. The essential
' observation is that if a proper mechanism is found that sta-

sented in this section is essentially Reynolds number inde-." )
pendent y Rey eb|||zes the boundary laydisuppresses the vortex shedding
In all the successful chaos control experiments presentett!'I‘e control of the vortex dy”a”.“cs N a VIScous flow can be
successful. At present, there is no reliable way to extract

thus far[13-17, control has been performed without theénformation from the boundary layer which could be used to

periodic orbits, and their eigenvalues and eigenvectors ha esign a simple controller that stabilizes the boundary layer.

been obtained by reconstructing the dynamics directly from his pr_oblem remains a continuous qhallenge for the fluid
time series. In simple open systems like the one studied ilqynamlcs and aerodynamics community.
this paper, a few scattering trajectories can furnish enough ACKNOWLEDGMENTS
information to reconstruct the dynamics around the saddle
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